

ToseehowMulficore Oxide-FreeSolder Creams offer youhigher profiffust waich

Applications donnt come much more erritical than digitial walch
 are screened onto ine PCB. Aprecisionjob, withno rsooto opera-
tor erro or fatioue And a convenient temporan achesve for tor error or araitue. And, a convenient temporary achesive for
the positioning of components
ordinary solder creams cannot match this proitbable periormance. Hereswhy...
L. because ordinary solder creams or pastes contain rosin-
based fiux mixed with solder rownder procuceed by atomisation. This means that eveny particie of the powder is covered with a layer of oxice- slowing down the solderng process, leaving as
dirty fux residue and causing sodider globulesto sick to the flux
 But, Multicore have devel loped a verls special method of oproducing solder powders that are virtually oxide-free.
Thesecanne used incream form- comprising anh omogeneous cally for hybrid microocricuits, PCBE and critical component

When healed, Multicore Oxide-Free Solder Creams melt and fiow as quickly and cleanyl as rosin-cored sodicer wre, eeavng a
pale clear illux restive with out sider ol obules pale clear filux residue wihout solder globules.
them the id ieal specification foralmost any application callino for
hem the Iveal Ispecilication foralmost any application calling tor
low costyet high reliability
They are avaliable in a wide renge of combinations of solder
allovs siuxes particle sizes filux contentis and viscosities oofter alloys, fiuxes, particle sizes, fiux contents and viscosities - oftien
replacing soldier preforms. However if you have an application that specificaly requires preerorms, remember inat Muiticore suppiv a wioe vaneev or
those as well Multicore Solders LTd are Ministy of Delence Regisered Con-
tractors and on Oualified Productst List QQ-S-57IE of U.S.

Solder-filow is accomplished by simply passing the units over a

This manufacturer says Multionre Oxicie-free soldiderCream has educed reject rate substantially and offerts superior soldeenng

Compare these electron-microscope

Servo pickup arm Control via the mains Foam in speakers

wireless world

ELECTRONICS /TELEVISION /RADIO /AUDIO

DECEMBER 1979 Vol 85 No 1528
45 One-way traffick
46 The intelligent plug
by N. McArthur, A. J. Wingfield and I. H. Witten

52 Practical parallel-tracking pickup arm
by R. Cooper
56 World of amateur radio

59 Circuit ideas Triangle-wave generator Analogue memory Digitally controlled attenuator
62 News of the month WARC and amateur radio Better radio coverage needed Radio paging uses broadcast network
66 Novatexts: astables - basic configurations by P. Williams
68 What's so natural about e? by J. C. Finlay
73 Letters to the editor Auditory cues in stereophony Scientific computer Acoustic breakthrough in record players
77 Two-metre s.s.b. and f.m. transceiver - 3 by G. R. B. Thornley
82 Seven-segment to b.c.d. encoder by D. C. Clegg
86 Counting the phases by D. Price
89 Why your speaker is full of foam by D. Thackeray
92 Sequential interrogation of push-switch arrays by H. A. Cole
94 New products
96 Sidebands by Mixer

DON'T GAMBLE WITH PERFORMANCE BUY

LEVELL TESTERS

Tests bipolar transistors, diodes and zener diodes. Measures leakage down to 0.5 nA at 2 V to 150 V . Current gains are checked from $1 \mu \mathrm{~A}$ to 100 mA . Breakdown voltages up to 100 V are measured at $10 \mu \mathrm{~A}, 100 \mu \mathrm{~A}$ and 1 mA . Collector to mitter saturation voltag is measured at $1 \mathrm{~mA}, 1 \mathrm{~mA}, 30 \mathrm{~mA}$ and 100 mA for $\mathrm{I}_{\mathrm{C}} / \mathrm{I} \mathrm{B}$ ratios of $10,20,30$. The instrument

TRANSISTOR RANGES (PNP OR NPN
${ }_{C B O}{ }^{\circ} I_{E B O}: 10 n A, 100 n A, 1 \mu A, 10 \mu A$ and $100 \mu A$ f.s.d. acc. $\pm 2 \%$ f.s.d. $\pm 1 \%$ at voltages of $2 \mathrm{~V}, 5 \mathrm{~V}$
$10 \mathrm{~V}, 20 \mathrm{~V}, 30 \mathrm{~V}, 4 \mathrm{~V}, 50 \mathrm{~V}, 60 \mathrm{~V}, 80 \mathrm{~V}, 100 \mathrm{~V}$ VOV $20 \mathrm{~V}, 3 \mathrm{~V}, 40 \mathrm{~V}, 50 \mathrm{~V}, 60 \mathrm{~V}, 80 \mathrm{~V}$, 120 V , and 150 V acc. $\pm 3 \% \pm 100 \mathrm{mV}$ up to
$10 \mu \mathrm{~A}$ with fall at $100 \mu \mathrm{~A}<5 \%+250 \mathrm{mV}$.
$B V_{\text {CBO }}: \quad 10 V$ or 100 V f.s.d. acc $\pm 2 \%$ f.s.d. $\pm 1 \%$ at
A, $100 \mathrm{nA}, 1 \mu \mathrm{~A} . . .10 \mathrm{~mA}$ f.s.d. acc. $\pm 2 \%$
.s.d. $\pm 1 \%$ at fixed ${ }^{2}$ of $1 \mu \mathrm{~A}, 10 \mu \mathrm{~A}, 100 \mu \mathrm{~A}$,
.

. 2 mV measured at condition
Vfs.d acc. $\pm 20 \mathrm{mV}$ at collector currents of $1 \mathrm{~mA}, 10 \mathrm{~mA}, 30 \mathrm{~mA}$ and 100 mA with $/ \mathrm{C} / \mathrm{I}_{\mathrm{B}}$ lected at 10,20 or 30 acc. $\pm 20 \%$
DIODE \& ZENER DIODE RANGES
$\begin{array}{ll}D_{R}: \quad & \text { ASI } I_{E B O} \text { transistor ranges. } \\ V_{Z}: \quad \text { Breakdown ranges as } B V_{C B O} \text { for transistors. }\end{array}$

,

A logarithmic scale covering 6 decades is used to display either insulation resistance or leakage current at a fixed
stabilised test voltage. The current available is limited to a maximum value of 3 mA for safety and capacitors are automatically discharged when the instrument is switched off or to the CAL condition. The instrument operates from a RESISTANCE RANG
$10 \mathrm{M} \Omega$ to $10 \mathrm{~T} \Omega\left(10^{13} \Omega\right)$ at $250 \mathrm{~V}, 500 \mathrm{~V}, 750 \mathrm{~V}$ and 1 kV . $1 \mathrm{M} \Omega$ to $1 \mathrm{~T} \Omega$ at $25 \mathrm{~V}, 50 \mathrm{~V}$ and 100 V .
$100 \mathrm{k} \Omega$ to $100 \mathrm{G} \Omega$ at 2.5 V .5 V and 10 V . $10 \mathrm{k} \Omega$ to $10 \mathrm{G} \Omega$ at 1 V .
Accuracy $\pm 15 \%+800 \Omega$ on 6 decade logarithmic scale. Accuracy of test voltages $\pm 3 \% \pm 50 \mathrm{mV}$ at scale centre. Short circuit vurrest between $500 \mu \mathrm{~A}$ and 3 mA CURRENT RANGE
100pA to $100 \mu \mathrm{~A}$ on 6 decade logarithmic scal Accuracy of current measurement $\pm 15 \%$ of indicated value. Input voltage drop is approximately 20 mV at $100 \mathrm{pA}, 200 \mathrm{mV}$ at 100 nA and 400 mV at $100 \mu \mathrm{~A}$.

Maximum safe continuous ov MEASUREMENT TIME

<3 s for resistance on all ranges <10 s for resistance of $10 \mathrm{G} \Omega$ across $1 \mu \mathrm{~F}$ on 50 V to 500 V . Discharge time to 1% is 0.1 s per μ F on CAL position. RECORDER OUTPUT
V per decade $\pm 2 \%$ with zero output at scale centre. Maximum output $\pm 3 \mathrm{~V}$. Output resistance $1 \mathrm{k} \Omega$.
等

Optional extras are leather cases and mains power units. Prices are ex works, V.A.T. extra in U.K.
LEVELL Electroncs tio

THINK DF A SHAPE

Whatever it is, the [-I||- 'S' range

 of power amplifiers will handle it H||H' range is designed to handle heavy industrial usage in the fields of vibrato driving, variable frequency power supplies and servo motor šystems.

S500D

Dual Channel
$19^{\prime \prime}$ rack mount $31 / 2^{\prime \prime}$ high
500 w r.m.s. into 2.5 ohms per channel 900w r.m.s. in bridge mode DC-20 KHZ at full power
0.005% harmonic distortion (typical) at 300w r.m.s. into 4 ohms at 1 KHZ 3KW dissipation from in-built force cooled dissipators

S 250D

Single Channel
19"' rack mount $31 / 2^{\prime \prime \prime}$ high
500 w r.m.s. into 2.5 ohms
Retro-convertible to dual channel DC-20 KHZ at full power Full short and open circuit protection Drives totally reactive loads with no adverse effects

A complete range of matching transformers and peripheral equipment for closed loop, constant current and voltage use are available.
Alternative input and output termination to order. Rack case for bench use built to specifications. For complete data write or call.

Kirkham Electronics
MILL HALL, MILL LANE, PULHAM MARKET, DISS, NORFOLK IP21 4XL TELEPHONE (037 976) 639/594

FRANCHISED COMMERCIAL AND INDUSTRIAL AGENTS FOR WW -035 FOR FURTHER DETAILS

WIRELESS WORLD. DECEMBER 1979

-

Measure Resistance to 0.01Ω
At a Price that has no resistance at all
New/Elenco : precision Digital Multimeter M1200B

ONLY £55

FUULY GUARANTEED
FOR 2 VEARS
-metal case

ex stock delinery
THE ULTIMATE IN PERFORMANCE MEASURES RESISTANCE TO 0.01 OHMS, VOLTAGE TO 100 MICROVOLTS, CURRENT TO 1 MICROAMPS AT LOWEST EVER PRICE!
FEATURES

- $3^{1 / 2}$ digits $0.56^{\prime \prime}$ high LED for easy reading
- $100 \mu \mathrm{~V}, 1 \mu \mathrm{~A}, 0.01 \Omega$ resolution
- High input impedance 10 Megohm
- High accuracy achieved with precision resistors,
not unstable trimpots
- Input overload protected to 1000 V (except 200 mV scale to 600 V)
- Mains (with adaptors not supplied) or battery
operation-built-in charging circuitry for NiCads
- Overrange indication

Hi Low power oh
Hi for diodes

SPECIFICATIONS:	
oc Volts	Fiange $200 \mathrm{mV}, 2 \mathrm{~V}, 20 \mathrm{~V}, 200 \mathrm{~V}, 1000 \mathrm{~V}$ Accuracy $1 \%+1$ digit, Resolution .1 mV
	Overload protection 1,000 volts max
AC Votts	Range $200 \mathrm{mV}, 2 \mathrm{~V}, 20 \mathrm{~V}, 200 \mathrm{~V}, 1000 \mathrm{~V}$ Accuracy $1.5 \% \pm 2$ digits, Resolution .1 mV
	Overload protection 1000 V max, 200 mV scale 600 V
DC Current	
	Overload protection -2 amp fuse and diodes
AC Current	Range $2 \mathrm{~mA}, 20 \mathrm{~mA}, 200 \mathrm{~mA}, 2 \mathrm{amp}$ Accuracy $1.5 \% \pm 2$ digits, Resolution 1 Microamp
	Overload protection -2 amp fuse and diodes
Resistance	Range 20, 200, 2K, 200K, 2 Meg. 20 Meg.
Environmental	Temp coefficient 0 0^{\prime} to $30^{\circ} \mathrm{C} \pm .025 \%^{\circ} \mathrm{C}$
	Operating Temp 0° to $50^{\circ} \mathrm{C}$ Storage - 20° to io $0^{\circ} \mathrm{C}$
General	Mains adaptor: 6-9 Volts @ 200 mA (not supplied)
	Size $81 / 4 \times 5 \% \times 2 / 4 \quad$ Weight $21 / 2 \mathrm{lbs}$.

38 Mount Pleasant, London WC1X OA

I Name
Address
,

ME Maclin-Zand Electronics Ltd
38 Mount Pleasant, London WC 1XOAP
(C) N Zand Tel. 01-837 1165

ACLING

MK14 including the vDU and several program
writte ina form called MINIL
cations

- Hexadecimal keyboard -8 -digit, 7 -esegment
LED display 8×512 PROM, containing monitor rogram and intem, contace instruning
 Space available for extra 256 -bytre RAM and
16 port I / O Edge connector accessto all data lines and $1 / O$ ports.
Free Manual
Every MK14 kit includes a Manual which deals
with procedures from soldering techniquesto
inth procedures from soldering techniquest to
interfacing with complex external equipment. It includes 20 sample proxrams inal incuupmenting math
routines (square root, etc), digigial alarm clock,
 nding games, self-replication, general

To: Science of Cambridge Led, 6 Kings Parade, Please send me the following, plus details of other	ambridge, Cambs., CB2 1SN. eripherals:
ПMK14 Standard Microcomputer Kit ${ }^{\text {(1/ }} £ 46.55$	\square Cassette (14. 7.25
\square Extra RAM (1/ 4.14	$\square \mathrm{VDU}$ " 533.75
\square RAMI/O deviceta ¢8.97 $^{\square}$	\square PROM Programmer (4) 61.85
CSUU(1) 6.10	\square Further Applicaions Program

Britains Best Breadboard Buy at Breadboard 79

YOUR COMPLETE RANEE OF ELECTRONIC HARDWARE..

WIRELESS WORLD. DECEMBER 197

Hilomast Lto

HILOMAST LIMITED
THE STREET HEYBRIDGE - MALDON ESSEX CM9 7 NB ENGLAND MALDON (0621) 564
ww - 078 FOR FURTHER DETAIL

get proven reliable lab power

LSeries - for 12 years, a firm favourite with engineers.

Voltage modes over thre
voltage ranges from $0-60 \mathrm{~V}$-ideal
for a wide variety of laboratory applications.
Continuoushly yariabie but highly stable outputs combine with proven reliable circuit design to provide trouble-free operation into
any type of load. Outputs are fully floating. Ether terminal may be any type of
grounded.
Series or parallel operation - the units may be series connected in the voltage mode or parallel connected in the constant current
mode - is an important feature. Both single and twin units are compact in design, occupying minimum valuable bench space. Voltage and current, set by multi-tum or concentric potentiometers, can be monitored on separate or dual scale
moving coil meters. moving coil meters.
Available ex-stock.
Send for price breaks and full specifications.

coutamt powerm

England Coutant Electronics Limited, Traftiord Aoad,

Coutant also operate in all other European countries. ww - oge for further details

Carston Electronics

Oscilloscopes
TEKTRONIX 465
DC-100MHz Dual Trace $5 \mathrm{mV}-5 \mathrm{VY}$ DC 4 MHz $0.05 \mu \mathrm{~s}-.5 \mathrm{5s} /$ Div Delayed $T / B \times Y \quad £ 1200$

TEKTRONIX 475A
C-250MHz Dual Trace 5 mV -5V/Div $0.01 \mu \mathrm{~s}-0.5 \mathrm{~s} /$ Div Delayed T/B XY DC 3 MHz £1950

THESEINSTRUMENTS SOLD WITH ONE YEAR FULL CUAVAMEE

Other New
Additions to our Stock -

01-2675311/2

Redundant
Test Equipment Why not turn your und lest equipment into cash ? Ping
us and we'll make you an offer.

Are your meters good enough? If your recordings are spoilt by uneven levels and overloads-install Soundex professional PPM's now.

One of the Bulgin Group of Companies. Sounclex LTod
Park Lane, Broxbourne, Herts, Tel: Hoddesdon 64455
WW - 057 FOR FURTHER DETAIIS

Future Film Developments
 36/38 Lexington Street, London, W1R 3HR. Tel: 01-437 1892/3 Tix: 21624 ALOFFD G

 ww-032 FOR FURTHER DETAILS
AMORD IN your ant

Hameg the mame for quality, performance and value in DSCILLOSCOPES. Advanced desigm optimising the use of both integrated circuits and discrete component ensures relability
make you want to know more

HM 307
HM 312
Single Trace DC-10 MHz, $5 \mathrm{mV} / \mathrm{cm}$ Plus built in Component Tester Dual Trace DC-20 MHz, $5 \mathrm{mV} / \mathrm{cm}$ Sweep Speeds $40 \mathrm{~ns}-0.2 \mathrm{~s} / \mathrm{cm} 8 \times 10 \mathrm{~cm}$ Display
HM 412 Dual Trace DC-20 MHz, $2 \mathrm{mV} / \mathrm{cm}$ Sweep Speeds $40 \mathrm{~ns}-2 \mathrm{~s} / \mathrm{cm}$ and Sweep Delay
HM 512 Dual Trace DC- $50 \mathrm{MHz}, 5 \mathrm{mV} / \mathrm{cm}$
Sweep Speeds $20 \mathrm{~ns}-5 \mathrm{~s} / \mathrm{cm}$ plus Sweep Delay
HM 812

We may be a new name to you, but each instrument is backed by over 21 years experience in oscilloscopes.

For FULL Details please contact HAMEG Limited 74-78 Collingdon St., Luton, Beds. LU1 1RX Tel: (0582) 413174 UK Subsidary of Hameg K Hartmann KG

Testing... Testing:. Testing..

The FM/AM 1000s with
Spectrum Analyser
A portable communications service monitor from IFR, light enough to carry anywhere and good enough fo most two-way radio system tests. The FM/AM 1000s can do the work of a spectrum analyser, oscilloscope tone generator, deviation meter modulation meter, signal generator wattmeter, voltmeter, frequency error meter-and up to five service engineers who could be doing something else!
For further information contact Mike Taylor

Topvalue testequipment fromTANDY

TOTAL AMPLIFICATION FROM CRIMSON ELEKTRIK
WE NOW OFFER THE WIDEST RANGE OF SOUND PRODÜCTS -

WHY BUY A MICRO-COMPUTER FROM (D) TB A A F F ELETRONIC BECAUSE

WIRELESS WORLD, DECEMBER 1979

COMID $834 / 5$

Card-expandable micro-processor
Heart of the KGM C700 Heart of the KGM C700 is
a micro-processor powerful a micro-processor powerful
enough for really fast text
nover movement. Card expantion
space allows for extra space allows for extra
memory up to 64 K .
High performance display
High definition scan coil and
dynamic fo exnamic ocussing give
extenally clear display
the $12^{\prime \prime}$ scis the $12^{\prime \prime}$ screen. A character
generator offers 80×24 characters in 10 to 48 pt -
$K G M$ designed to match Kisplay designed to matconce.
ditan
display performance.
Keyboard choice _-_---
Specify a 128 character computer kevboard,
a selective format text editing keyboard or a selective format text editing keyboard, or
a separate plug-in numeric pad -all planned a separate plu
for easy use.
NEW C700 series of programmable data terminals
Systems designers....computer manufac-
turers. \ldots please notel Y You can C700 units with a keyboard choice, then add extra capacity or interfaces viais standard
Eurocords. The $C 700$ concept means state-of-the-art micro-procecssing, prececisely tailore of-he-art micro-processing, precisely tailor
to your needs - without a single design
problem Ask problem, Ask Ls for details.
KGM Electronics Limited. Clock Tower Rd
Isleworth Midlesex Tel: 01-568 0151. Telex: 934120
$\mathrm{ww}^{055-F O R ~ F U R T H E R ~ D E T A I L S ~}$
 wW-038 FOR FURTHER DETAII

ELECTRONCCOMPONENTS AND VARIOUS TESTERS

 ELECTRICAL INDICATING METERS PANEL METERS
EARPHONE \& HEADPHONE JACKS
VOM MULTI TESTERS POTENTIOMETERS

BATTERY TESTERS BATTERY TESTER PLANT PROBES

HIGH PERFORMANCE! PROMPT DELIVERY! COMPETITIVE PRICES!

 WHAT MORE DO YOU WANT?Hung Chang, world's largest independent manufacturer \& ex porter of Meters and Testers, has production capacity of more than 1,000,000 Meters per month. You will be completely satisfied with our products that have been exported to more than 35 countries and made by our 1,200 workers with special care Please contact us and you will know Hung Chang

```
-HC HUNG CHANG PRODUCTS CO., LTD
HEAD OFFICE \& FACTORY
```



```
TELEPHONE \(\quad 389-0111 / 2,389.7001 / 3,386-6001 / 5\)
ELEHCP K8847
```

sole uk agents
ARMON PRODUCTS LTD COTTRELL HOUSE 53-63 WEM
MIDDX. HA9 8BH
MELDX. HA9 8BH

Logic Test Instruments

Logic Probes

Please send details of Logic Probes and Clips.
品
Pease supply goods as detailed below:

- TL Logic Probes @ £23.00 Price
-_CMOS Logic Probes @ £28.75
- TL Logic Clips @ $£ 34.50$
\qquad
—— CMOS Logic Clips @£48.30 ———
Above UK prićes include postage, packing \& 15% VAT,
lenclose cheque \quad PO $\square^{\text {Total remittance } £-}$
Debit my Access \square
Barclaycard $\square \quad$ Trustard \square
account No. $\square \square \square \square|\square||\mid \square \square \square$
Name
Address
Post code
Signature
Ryley Automation Ltd. 298 Ringwood Road, Ferndown, Wimborne, Dorset
BH22 9AS. Tel: Ferndown (10202) 892525.

[^0]METER PROBLEMS?

137 Standard Ranges in a variety of sizes and stylings available for 10-14 days delivery. Other Ranges and special scales can be made to order

Full Information from:
HARRIS ELECTRONICS (London) 138 GRAYS INN ROAD, w.C. 1 Phone: 01/837/7937 ww - 89 FOR FURTHER DETALLS

TV TUBE REBUILDING

Faircrest Engineering Ltd., manufacture a comprehensive
range of equipment tor processing colour and monen Standard or custom built units for estab-
lished or new businesses. We we to lished or new businesses. We export world-wide and have an
excellent spares service backed by a strong technical team. Full training courses are individually tailored to customers

For full details of our service contact Neil Jupp
FAIRCREST ENGINEERING LTD.
Willis Road, Croydon, CRO2XX
$01-6841422,01-6898741$
Ww - 030 FOR FURTHER DETAILS

For service above and beyond the call of duty
 The Avometer 8, the prime tool in fault finding, regarded by industry

 as the standard against which all multimeters are judged. Contact your usual distributor or send for further information to:Avo Limited, Archcliffe Road, Dover, Kent CT17 9EN.
Telephone: (0304) 202620
Telex: 96283

Brmm.o.Splasho. Zoom with ZNAI OCE precision

Our servo IC gives you a complete servo control system on a chip.
It's specially designed for the pulse-width position servo ZN419CE gives you a low external component count and high Send for the data sheet today, and a full list of stockists. Ferranti Electronics Limited, Fields Neww Road Chadderton, Oldham OL9 8NP Telephone:061-624 0515

FERRANTI Semiconductors

 WW - 023 FOR FURTHER details ELO2/14/069 (ib)
The King of Valves

Genuine Gold Lion valves-hand built, utilisising advanced pumping echniques and individually tested to a tight specification - are your
answer to the high quality sound demands made by musicians and isteners alike.
Gold Lion KT77's and KT88's covering $30-200$ watts, are now
available from data and distribution details. Find out all about the King of Quality-
from M-OV.
© Trade Mark of M-OV Audio Valves.
MOV
 ww - 019 FOR FURTHER DETAILS
(20)

Microcomputers are coming - ride the wave! Learn to program
Millions of jobs are threatened, but millions mo will be created through the microcomputer revolution. Will YOU sink or swim? Be one of the people who welcomes computers and the end of
boring jobs. boring jobs.
most easy-to-learn compuage of the small computer and the
yourself with a course which wing takes you frospread use. Teach
igne Yourself with a course which tates you from completete use. Teach
ignorance step-by-step to real proficiency - all you need to start
 decimals. And you don't need a computer.
This unique course comes as four A4 books, written by three authors well-known comes as the four A4 books, written by thicrocomputing, self.
instruction and writing clear English. In 60 straight, sla instruction and writing clear English. In 60 straight十, serwar
lessons you learn the five essentials: problem definition flowcharting, ocding the essentias: problem definition,
clear documentatation. Every lesson has thoug or mindless drudgery. YY-provoviking questions and we never ask
material and feel a rare satistaction that you are mastering the material and feel a rare satisfaction. Harder probebems are
provided with a series of graded hints, a unique and really
helpful helpful approach. So you never sints, a gassy-yiqe aed and really
blank. First time through, you mary meed a blank. First time through, you may need to read most of the
hints, but you will soon learn to tackle tough programming tasks. such as writitg programs for computer games, preparing
graphs on an outtut pronter calculating compound interest
tables and estimating costs.
COMPUTER PROGRAMMING IN BASIC £7.50

 Book 3 Compiers and inteipreters; loops, FOR....NEXT; RESTORE; debugging

THE BASIC HANDBOOK £11.50 This best-silling American titte usefully supplements our BASIC
course with an alphabetical
 occur in BASIC terminology. The dozens of BASIC 'dialects'
use today mean programmers often need to ronssate
instructions so that they can be RUN on their system. The instructions so that they can be Re RU on their system. The
iASIC Handbook is clear, easy to use and should save hours
your time and com your time and computer time. A must for all users of BASIC
throughout the world.

FORTRAN COLORING BOOK $£ 5.40$ "If you have to learn Fortran (and no one actually wants to
assimiate it for the good of the soul) buy this book. Forget the others-this one is so good it winl even help hyis book. Forget the
standard, dense, boring understand the
A.N.S. COBOL $£ 4.40$

Covers the most widely used computer language in
oday. It teaches how to write today. It teaches how to write a COBOL program and compile it
effectively, paying proper attention to spelling, punctuation, and
format

THE ALGORITHM WRITER'S GUIDE $£ 3.40$
FLOW CHARTS \& ALGORITHMS help you present: safety materials and computer programs by means of Y CS answers to questions. The Algorithm Writer's Guide
explains how to: define the ques explains how to: define the questions, put them in the best
order and draw the flow chart, with numerous examples sh
All that All that sturawnts require is an ant witith numerous for logical tholes shownt. Size:
A5, 130 pages. This book is a MUST for those with thing to

Cambridge Learning Enterprises

Understand Digital Electronics In the years ahead the products of digital electronics technology
will play an important part in your life. Calculators and digital watches are already commonplace. Tomorrow a digital display
could show your vehicle speed and fuel consumption ; ou could could show your venicle speed and fuel consumption, you could
be 'phoning people by entering their name into a telephone
which would automatically look up their. number and dial it for which would automatically look up their number and dial it
you. you.
These courses were written by experts in electronics and
learning systems so that you could teach yourself the theory learning systems so that you could teach yourself the theory
and application of digital logic. Learning by self-instruction has the advantages of being faster and more thorough than
classroom learning. You work at your own pace and must classroom learning. You work at your own pace and m
respond by answering questions on each new piece of information before proceeding.
After completing these courses you will have broadened your
career prospects and increased your fundamental understanding
career prospects and increased your fundamental under
of the rapidly changing technological world around you.
DIGITAL COMPUTER LOGIC
AND ELECTRONICS £6.50
Digital Computer Logic and Electronics is designed for the beginner. No mathematical knowledge other than simple
arithmetic is assumed, though the student should have an arithmetic is assumed, though the student shoul have an
aptitude for logical thought. It consists of four volumes. -each
A size - and serves as an introduction to the subiect of digital A4 size - and serves as an introduction to the subject of digit,
electronics. Everyone can learn from it- designer, executive, electronics. Everyone can
scientist, student, engineer
Book 1 Binary, octal and decimal number systems; conversion between number
systems.
Iables.

DESIGN OF DIGITAL SYSTEMS

£10.50

Design of Digital Systems is written for the engineer seeking
to learn more about digital electronics. Its six volumes - each A4 Io learn more about digital electronics. Its six volumes - ea
size are packed with information, diagrams and questions size are packed
designed to lead you step-bv-step throunh number systems and
Boolean algebra to memories, counters and simple arithmetic Boolean algebra to memories, counters and simple arithmetic
circuits, and finally to a complete understanding of the design circuits, and finally to a complete understanding of the design
ind operation of calculators and computers. Contents include:
Book 1 Ocata, hexadecimal and binary uumber systems; conversion beeween number

O-LEVEL ENGLISH LANGUAGE $\mathbf{f 6 . 5 0}$
More and more jobs require a C-GRADE PASS, and over
250,000 people fail to get this every year. Will one of them your family? This new course, written by experts in a style that's serious yet fun to read, shows you how to mark your
own work and compare it with the work of other people in their own work and compare it with the work of oner peotre
exam year Set your own pace and assesy your result
immediately with no postal delays: watch your speed and immediately with no postal delays: watch your speed and
standards morove. In Book 1 learn how you will be marked on
COMPREHENSION. Book 2 covers SUMMARY, COMPREHENSION, Book 2 covers SUMMARY,
CUNCTUATIN \& SPELLING, and Book 3 coaches you in the PUNCTUATION \mathcal{S} SPELLING, and Book 3 coaches you in the
principles of COMPOSITION. Size: 3 A4 volumes totaling 250

SELF-INSTRUCTION COURSES

 The BASIC Handbook at $£ 111.50$ FORTRAN Coloring Book at $£ 5.40$
A.N.S. COBOL at $£ 4.40$... Algorithm Writer's Guide at $£ 3.40$
Digital Computer Logic $\&$ Electronics (4 books) at
66.50
....Design of Digital Systems (6 books) at $£ 10.50$
... .Level English Language (3 books) at E 6.50 enclose a *cheque/PO payable to Cambridge Learning Ienclose a chec
Enterpises for f .
Please charge my
*Access/Barclaycard/Visa/Eurocard/Mastercharge/Trustcard
account no.
delete where applicable
Signature holders accepted on
0480-67446 (Ansafone). Overseas customers (inc. Erel should send a bank draft in
credit card number

Name
Address

Cambridge Learning Enterprises, Unit 35, Rivermill Site,
FREPPOST, St, Ives, Huntingdon, Cambs PE17 4BR, England.

With the new Oryx miniature low voltage soldering station

 FIRST
COMPLETE EVER COMPLLER SCLDERING 6 WATT SCLIN:
STATIN
you get precision, operator safety, a choice of soldering iron tips and superb value at $£ 9.95$ (+VAT)

$$
\text { The new PSU } 6 \text { volt soldering station, operating at } 360^{\circ} \mathrm{C} \text { has its own compact power unit, a double }
$$ insulated transformer and comes complete with an Oryx 6 watt miniature soldering iron, sponge, sponge well, spring holder mounted at an easy load angle, indicator lights and an internal safety fuse. Obtainable also Electroplan Limited, Orchard Road, ITT Electronic Services, Edinburgh Way, Toolrànge Limited, Upton Road

Tilehurst, Reading. RG3 4JA. - Obtainable also from our distributors: Royston, Herts. SG8 5 HH .

Greenwood Electronics
Portman Road, Reading, Berks. RG3 1NE Tel: (0734) 595844 Telex: 848659
MARTIN ASSOCIATES (ELECTRONICS) LTD., 34, CROWN STREET, READING.BERKS.
TELEPHONE: READING (0734) 595853/51074
WW - 063 FOR FURTHER details

digital multimeters
Digital mutimeter
FLUKE 8022A
$3 / 2 / 2$ digit
ACV. ACI Ohms. Acgit DCD display. F.S.D. 1.999. Range DCV DCI
FLUKE 8000
${ }_{\text {AC }} \mathbf{F} .1 \%$ Display F.S.D. 1.999. as per 8ozizA. Acc. DC 0.1% SEND ALL GURANTEED FOR I YEAR
ANAL.......

complete in box. From Transfer Function and Immittance Bridge,

COUNTERS
MARCONTTF. $1417+$ TM. 71647 Digit 500 MHz
HEWLETTPACKARD 5260 . \& MARTIN ASSOCIATES

 Solid State
SCOPEX 4D-25 Dual Trace DC. 25 MH .
 POWER SUPPLY UNTTS
ROBAND C.128 Convertor. I/P $200-250 \mathrm{~V} 50 \mathrm{~Hz}$. O/P 115 V - 400 Hz Solid
State 100 VAR

 HECWETTTPACKARD 7035B X.Y Plotter
HONEYWELL 17066 Channel U/V Chart MISCELUANEOU
AVO CZZ.4576 Component Comparator 1 KHz
AVO ADL.270/6BR Analogue Limit Detector AVO ADLL.270/6BR Analogue Limit Detector

WW - 018 FOR FURTHER DETALLS

Finally, you can have all the advantages of DMMs and none of the disadvantages of analogues

MCP Electronics Limited
Station Wharf Alperton Wembley Middx
Telephone: 01-902 5941
the indispensable

Exclusive UK representative

3
for about the same price.

Our new 169 is a tough, lightweight
battery-powered digital multimeter for use in the field or on the bench. It is a $3 \frac{1}{2}$-digit, full 5 -function DMM with respectable $.25 \%$ DC accuracy.

Its low-parts-count, high-efficiency design keeps power consumption to a minimum for longer componen power consumption to a minimum for longer component falures. MTBF is 20,000 hrs, or about 10 years.

All 5 functions are fully protected -1400 V peak on DCV and ACV 300 V on Ω

 $2 \mathrm{~A}(250 \mathrm{~V})$ on DCA and ACA. The fuse is externally accessible for quick replacement. Extensive vibration stress-testing assures the 169 will stand up to all the mechanical shock and abuse normally associated with tough applications

Cost-conscious ease of maintenance is n 1 only one calibration adjustment a year is required That that adds up to a cost-of-ownership no other competitive DMM can touch. For example, the 169 needs only one battery change

When you factor in features like function and range annunciation right on the

KEITHLEY

Koithley Instruments Ltd.
1, Boulton Road
UNTED KNG, Berkshire RG2 ONL
(0734) 861287 Telex: (851)847047

Metal Cases

Our catalogue contains small metal enclosures for every application including the attractive new G range cases, with unique integrated chassis and sloping visor front and the inexpensive kit-form Veropak inexpensive kit-form Veropak accessories, module frames and accessories, module frames and highest standard to give your
 equipment the quality you demand. Send 25 p to cover post and packing and the catalogue's yours.

If QUAD amplifiers are so perfect, why does itstill sound better in the concert hall?

In real life, the sounds from all the instruments and sometimes parts thereof are independently radiated and so are not 'phase locked' together nor are they subjected to common eigentones

These mutually incoherent wavefronts are subjected to tiny but important reflections at the pinna and finally end up as just two channels representing the pressure at the two ear drums. It is not possible to achieve this transfer accurately by means of loud-speakers or headphones however good these components may be

Nevertheless with good amplifiers and loudspeakers (and on those occasions when the people at the recording and transmitting end get it right) a musical experience can be achieved which is extremely satisfying and one of the greatest pleasures of our time

For further details on the full range of OUAD products write to: The Acoustical Manufacturing Co. Ltd., Huntingdon, Cambs. PE18 7DB Tel: (0480) 52561
ww - 085 FOR FURTHER DETAILS

Series IIIS precision pick-up arm

because we wanted more people to enjoy it. We were not prepared to giv an inch on performance or
manufacturing quality and th
nitrogen hardened titanium tone arm had to remain. However we found a number of ways in which economies could be effected and they have been incorporated in this new model.

The best pick-up arm in the world
Write to Dept 0656,
SME Limited, Steyning, Sussex, BN4 3GY, Englánd

Adjustments are made directly instead of through lead screws or rack and pinion, the absence of these things being a matter of operating convenience only. Lateral balance was also dispensed with as it is unimportant in this type of arm ww - 016 FOR FURTHER DETALIS
unless the deck is seriously out of level. The fluid damper is a refinemen but not essential and so we made it an optional accessory. This simplified version of the Series III offers an attractive saving in price and either is immediately available through your usual dealer. We shall be glad to send you details on request.
*Another accolade for SME: the Series III precision pick-up arm was one of the Design and Engineering Awards at the 1979 U.S Summer Consumer Electronics Show, the only pick-up arm to be acknowledged in this way.

IT’S HPPPEIIIED RFAII!
 \& UE HRUE IIOUED TO BICTER PREMIISES.

roughout the industry.But Sullivan also make some instrumentsthat are iust as much athome on the factory floor as on the laboratory bench. This is typified measurement of high value discreteresistors and the insulation resistan forthe conductive materials motors discete resistors and the insulation resistance of nonup to 1000 V d.

The instrumentalso has a current measuring facility inherent in its operation. currents as lowas 1 pico-ampere may beindicated

Indeed, the Megohmmeter can provide accurauteresults,clearly and at temperatures of up to $50^{\circ} \mathrm{C}$. Get in touch with us today for the full facts on the Sullivan MegohmmeterT2900.
H.W.Sullivan Limited Archcliffe Road, Dove Kent CT179ENTe:0304 202620 Telex:9628
Thum Thom Measurementr Components Ovision

 9,

 $\frac{\text { FREOUENCY READOUT LSI From OKI With }}{\text { a one.chip answer to most digital frequency }}$
 Trimmer capacitors.
MeTeRs of linear movement
Mypes, plus many tange indicator tyypes for VU, all
 SOCKTS a new range that are better quality
than Texas low wrofile Yet better priced.
Modules tor AMIFMISTEREQ complete kits

[^1]Hitachi
 Hitachi ORR. LATEST MOVING EXPERIENCE, At last, we have moved to the address below. There is car parking for customers approaching via
North Service Road lan extension of North Road Avenue, entrance oposite the Brentwood Fire Station.) Pedestrian access from the High Street
200 north Servite Rioud, Brentwand, E5sek.

The 935

HANDY • VERSATILE • TOUGH • PRECISE

Conact: ©(0) Farnell International

reprints

WW - 111 FOR FURTHER DETAIL

If you are interested in a particular article/ special
this issue of

WIRELESS WORLD

why not take advantage of our reprint service. Reprints can be secured at reasonable cost to your own specifications providing an attractive
and valuable addition to your promotional material: (Minimum order 250.)
For further details contact:
For further details contact:
Brian Bannister IPC Electrical-Electronic Press Ltd. Phone: 01-261 8046 or simply complete and return the form below. To: Brian Bannister, Reprints Department Dorset House, Stamford Street
London SE1 9LU
1 am interested in copies of the article $/$ advertisement headedeatured in WIRELESS WOR
on page(s) in the issue dated
Please send me full details of your reprint service by Please send me
return of post.
Name
Company
Address

TheNEWP3

from PRECISIONPETITE
for the man in a hurry...

Simply ahead..
 ILP'S NEW GENERATION OF HIGH

PRODUCTS OF THE WORLD'S FOREMOST SPECIALISTS IN ELECTRONIC MODULAR DESIGN

and staying there

 PERFORMANCE MODULAR UNITS

A Conference and Exhibition to build better understanding between the makers and users of microelectronics

THE FOUR-PART PROGRAMME PROVIDES EVERYTHING FROM AN INTRODUCTION TO MICROPROCESSORS TO AN OVERVIEW OF THE LATEST DEVELOPMENTS IN MICRO-TECHNOLOGY

- Conference Sessions share the experience of experts in the microsystems field. Topics
include: Technology Update . . . Micro Software
. Controlling Microprocessor Projects Microprocessor Applications . . . Bridging the Hardware/Software Gap . . . Microprocessors in Process Control. On the third day emphasis will be on Personal Computers.
- Buyers' Forum sessions help buyers to establish criteria for effective selection of goods and services. They will cover: Microprocessor Development Systems . . . Sixteen-bit Microprocessors . . . Memory Products Single-chip Microprocessors.
- Exhibition of the latest in microprocessors memory products, peripherals and personal the suppliers
Professional Development Courses 3 one-day courses presented by
How to get started with microprocessors a guide for Managers a guide for Managers
Microprocessors and Microcomputers PASCAL - the languop for Engineers PASCAL - the language of Microsystems an overview
Send the coupon below for Conference details and charges. Entrance to the Exhibition is free.

WIRELESS WORLD, DECEMBER 1979

WIRELESS WORLD, DECEMBER 1979
 COMPUTER THE LATEST

" State of the Art" addition to WERSI
range of kits or send $£ 1$ for our 104-page full colour catalogue and supporting literature. Visit our showroom to see the fabulous

 SOUND

AURA SOUNDS
14-15 Royal Oak Centre
Brighton Road, Purley, Surrey Tel. 01-6889733 and
17 Upper Charter Arcade Barnsley, Yorks. Tel. 02265248

Manufactured in France British Patents applie for

No other cleaner has all these advantages:-

1. Only 100% pure. natural diamond grains are utilised

2. Al diamond gains ar

- Grain size 200. thikkness $55 / 100 \mathrm{mm}$. . borth faces diamonded. For auick cleaning of industrial

Sole Distributors for the United Kingdom
PECIAL PRODUCTS (DISTRIBUTORS) LTD
SPECIAL PRODUCTS (DISTRIBUTORS) LTD
Piccadilly, London W1V OHL. Phone: 01-629 9556
 WW - 057 FOR FURTHER DETAILS

fact:
 we've put a NEW plus
 into the Super-Track Plus family of V15 Type III Cartridges

V15 TYPE III-HE IMPROVEMENT STYLUS
${ }^{\circ}$ SHURE ${ }^{\circ}$

If you
already
own a V15 Type III you can upgrade it!
udiophiles who already own a $V 15$ Type III, you too can benefit from the the Hyperelliptical stylus. Simply replace your present stylus with the new VN35HE
improvement stylus. It will give your Type III cartridge the same specifications as seconds to install (see illustration) requires no tools whatsoever.

wireless world

One-way traffick

To complain about politics coming into discussions on frequency allocations at WARC 79 is either a hypocritical cover or extremely naive. But that is wha Geneva, Professor Glen Robinson, ha done (in a recent article in Satellite Communications). It's true that the allocations are being made to radio services in general for the whole world, that different countries have different priorities for the division of particular bits of spectrum between services, for example, between radio
These priorities depend on value judgements of what is important in the various societies - and what are these but political? For example, Professor Robinson makes it clear in his arti delegation at WARC 79 is to seek agreement on incremental changes "in order to enhance US economic, social and national security interests". What is this but political?
As main areas of politiported, one of WARC 79 is the conflict of interests between the rich, industrialized nation of the northern hemisphere and the poorer, developing nations of the North-South confrontation. This conflict arises, of course, from the colonial past. What are now developing nations were formerly colonies of the 19th century powers. Having achieved particularly the non-aligned group are struggling to secure their national sovereignty, their economic independence and their cultural integrity. This is difficult for them not only because they are poor but because the industrialized nations are dominant in communications - both in the amount of information received and transmitted (news, entertainment, and in the industrial development of the means of conveying it (books, newspapers, news agencies, telephones, data transmission, broadcasting, sound and video records
etc). There is in fact a predominantly one-way flow of information from th powerful to the less powerful. Built up
during the colonial past it now during the colonial past, it now nations towards real autonomy and, according to UNESCO, has produced a gulf in communications which is widening alarmingly and may hav irreversible consequences. This the monopolization and concentration of information and entertainment that one now sees within the industrialized nations themselves. In the totalitaria controlled by the state; in market economies it has become an industry run for profit. Both systems exploit the media and can lead to distortion,
conformism and the production of conformism and the production of managed by professional
communicators. Manipulated and homogenized, they devolve into mer consumers of packaged information products to which they have in no way
contributed. These processes strengthen the position of the dominant groups and the established orders.
It is this flood of alien the networks which convey it which the non-aligned countries are trying to resist, for very good reasons. As the UNESCO commission for the study of communication problems says, "Intellectual subjection is a negative as political subjection and
cultural dependence as pernicious as economic dependence". The developing countries are seeking a new democratization of communication, in which messages will not only reach population, including minorities and disadvantaged groups. They want a dialogue among equal partners instead of a one-way transmission from the exploit them. It's small wonder that the politics of this resistance should play a significant part in an international conference like WARC 79 which has to make decisions about a means of

The intelligent plug

Controlling remote domestic appliances by microcomputer

This article describes a system for transmitting digital signals on the domestic mains wiring, to permit remote contral of devices within a house from central unit without having to install special cabling. Transmission is between
Neutral and Earth for maximum safety. It is envisaged that the central controller will be a microcomputer system to provide the necessary flexibility, although a special-purpose hardware controller could easily be built. The system
described uses simplex (one-way) transmission from the controller to the receivers, which are situated at each plug, and performs reliably with a very low error rate. A modification is described for half-duplex (two-way)
transmission, and this will permit information from remote sensors (such as a thermometer) to be sent to the central win
ONE ATTRACTIVE WAY of using a microcomputer is to devise a simple, applicances, which can combine remote control of devices - like television sets, electric blankets, kettles - from a central unit, with timer facilities to switch any unit on or off automatically at obstacle to the introduction of such a system into the home is the need for communication cables connecting the central control unit to the appliance, really need a bus system to be installed around the house.
One solution to this problem is to transmit the control signals through the picked up at any mains sols can be receiver which responds to unique digital address codes: the mains wiring constitutes the microprocessor's inputoutput bus. The plug-in receiver unit is dubbed an "intelligent* plug", and 13A plug body, like those of battery eliminators used for calculators and radios. Using the mains as a data bus in pis manner has the advantage that an

[^2]to another part of the house where it will continue to function under automatic control. Plugs can be used to switch electric blankets, lights, radios, etc. from a remote microprocessorbased control unit. Furthermore, with
duplex (two-way) transmission they can be incorporated as part of a heating system to relay temperature back to the computer and switch heaters on and off as necessary. The timing and logical allow control at preset times and under predetermined conditions (for example, if the kettle is switched on between 10 p.m. and midnight then the electric blanket is turned on!). When the house
is vacant, one could arrange for lights to is vacant, one could arrange for lights to
be switched on and off at intervals to simulate occupancy, as a burglar detersimula
rent.
It ap
It appears to be perfectly legal to use the mains for data transmission in this way. Indeed, sometimes it seems that
the only wiring the hobbyist can not use for signalling is the Post Office elephone system! Although the Electricity Generating Boards used to poses, this was only between sub stations, and high-frequency signals cannot pass sub-station transformers. Eagle Electronics already sell baby alarms which operate on this ingenious principle. Indeed, intelligent plugs have puter hobbies market in the USA (we did not know this when we started the project a year ago).
This article describes the design and construction of an intelligent plug system. The work was undertaken as final year student project by the first wo authors in the Department of Elec rical Engineering Science, University constructed. The first is a simplex (oneway) system, capable of remote control nd also of text transmission, using the erial transmission 1200 baud over a distance operates hundred metres, with an error rate of the order of 0.01%. The second system uses half-duplex transmission, with the ame carrier frequency and an agreed poling protocol, which ensures that not occur. The controlling micro-
processor is capable of detecting when a device is unplugged, with a simple time-out program.
Several interesting system problems arise from the intelligent plug. For example, what happens if your neighbour installs the system? Can he control practical difficulties inherent in the nature of a student project, this question was not investigated. If house-to house interference does prove to be problem, it may be overcome by usin
different carrier frequencies in neigh bouring homes, or by prefixing eac transmission with an address byte to identify the house. The ability to trans mit from house to house could be ver his baby alarm when at parties across the street! - but obviously poses severe safety and security problems. Logica rather than physical solutions like those proposed above may well fail to mee
adequate standards may have to resort to low-pass filters a he consumer unit where mains elec tricity enters the house. As mentioned hese issues were not tackled in the present project, but if intelligent plug they would certainly have to be faced. some guidance or even legislation from the Electricity Generating Boards Another issue whiche
Another issue which was investigate is error performance in noisy environ-
ments. For example, an old and wor lectric drill caused considerable degra dation when plugged into a socket be side the transmitter (about 30% errors,
almost all of which can be avoided with a single-bit parity check), but the effect decreased substantially when the drill was located two or three sockets away The standard a.c. mains system uses three wires: live, neutral and earth. This wires to choose when considering mains transmission system. Wireles Intercoms' commonly use live and eutral for transmission but thi requires an isolating transformer and
filter to remove the 240 V a.c. signal solation and filters are also required for transmission between live and earth but not if neutral and earth are used. Mains electricity is distributed in houses usually connected to different
phases so that every third house is tral and earth wires, however, are com mon to all phases as far back as the 11 kV distribution transformer at the substation, which is arranged in the If the intelligent plug used the live and neutral pair, interference could only occur between every third house along the street whereas, since neutral and earth are common to all phases, a transmitter using these wires could
affect every house. Although this may be seen as a partial solution to the problem of house-to-house interference, it is certainly not an adequate precautionary measure and so was not tage to live-neutral transmission. Surprisingly, perhaps, when considering the configuration of Fig. 1, there is sufficient impedance in practice becarrier to be transmitted There is only a small amount of mains hum present compared with that between live and neutral.
To help determine the best operating frequency and pair of wires to be used, a characteristics of the mains. The impedance and attenuation of a 20 m section of wiring in our laboratory were measured using both live-neutral and neuir was not tested, since it seemed to offer no advantage over live and neutral, and had the risk of shorting live to earth under fault conditions.
The impedance and attenuation chamission between neutral-earth live-neutral. The graph of Fig. 2 shows a marked peak in impedance at about 300 kHz , falling off rapidly at higher and lower frequencies. Since using neutral was decided to use this pair
It is worth noting that considerable variation is to be expected in mains mpedance from place to place: we have not conducted tests outside the
laboratory. However, we anticipate that the neutral-earth and live-neutral pairs will have similar characteristics, and recommend that the former be used, the system may hission frequency of mains impedance in domestic environ ments differs dramatically from our laboratory measurements.
Modulation technique Because the impedance of the mains
wiring is very low at d.c. and audio requencies it is not feasible to transmit baseband digital signals directly: the signals must be modulated onto a car rier at a suitable frequency. There are digital signals in common us amplitude-shift keying, phase-shift keying and frequency-shift keying. The hoice of modulation type was made with the following criteria in mind:

Fig. 1. Power distribution at the electricity substation

Fig. 2. Impedance and channel gain neutral-earth pairs, measured in the laboratory. be simple and inexpensive
-mains is not suitable for transmissio of frequencies below 50 kHz because bandwidth available.
bandwidth available is quite substan data transmission over telephone circuits.
electric motors, fluorescent lights, and so on cause large noise signals to appear on the channel.
-signal level varies over a wide range depending on the distan
-large 50 Hz signal and some har monics appear in the channel

The simplest way of modulating digital signal is amplitude-shift keying
where the carrier amplitude is switched
between two levels, usually on and off. Transmission system widely used in data in channel gain can cause a 0 to be interpreted as a 1 unless the receiver threshold is variable. It is also rather prone to interference and noise
With phase-shift keying, the phase of the carrier is switched, depending on
whether a 0 or a 1 is being sent. This requires coherent demodulation and so the demodulator circuit is rather complex and expensive. It has the advantage that the carrier is transmitted at a
constant level; furthermore its power spectrum contains no line components, and so all the transmitted power conveys information. This gives a good error performance at low power. With frequency-shift keying two
frequencies are transmitted, represent 0 's and the other to represent l's. The modulated waveform has constant amplitude, and the detection signal strength changes. Frequency shifts are easy to generate and detect and so this method was chosen as the
most appropriate modulation technique
for the intelligent plug. for the intelligent plug.
It was decided to frequency in the region of 150 kHz . From Fig. 2, the impedance that the neutralearth pair presents at this frequency is
about 20 ohms, quite suitable for the about 20 ohms, quite suitable for the
output of a power amplifier. If data is output of a power amplifier. If data is
transmitted at as high a rate as 9600
baud, each digit is represented baud, each digit is represented by 15
cycles of the carrier and so should be cycles of the carrier and so should be
detected reliably. Also, 150 kHz and its harmonics are clear of the public BBC radio frequencies.
In order to minimize the bandwidth used by the system, the spacing bet shift keying should be as small as possible consistent with reliable reception. The Nyquist theory imposes a minimum andwidth for transmission at a given from increasing the tone spacing significantly beyond this minimum Note, incidentally, that this contrasts with the situation for frequency modulated transmission of analogue information, where bandwidth can be ratio, and the modulation index, which is defined as the peak carrier deviation expressed as a fraction of the baseband frequency, is generally chosen to be tone spacing of twice the digit rate: this was found to give perfectly adequate discrimination and at the same time does not use excessive bandwidth. With the 1200 baud transmission rate that we frequencies of 150 kHz and 152.4 kHz .

Simplex system for on/off control

 A simplex system, which implements to receivers in plugs around the house is adequate for remote control applications, provided that feedback control is not required. For example, it is perfectly or off either directly 0 light or heater on the operator, or after a certain delay at a pre-specified time of day. If feedback control is needed, for example when monitoring heat or light levels whether to switch ons to determine detecting whether a "switch-on" com-mand has actually taken effect, whether a device is plugged in or not nel is required bermmunication chancentral controller.
Noting the cheapness and simplicity sys simplex, compared with a duplex system, we recommend it for home use at least initially. Furthermore, simple on/off control is all that is needed for
most domestic appliances. most domestic appliances. Hence, in
this section we describe in some detail the design of a simplex transmission system for on/off control. However, it incorporates the features needed to enhance it to half-duplex operation
(two-way but not in both directions at (two-way but not in both directions at
the same time), and we show later how to take advantage of this by adding a transmitter unit to the receiver in each plug. The component cost of the simplex system is about $£ 3$ for the trans-
mitter and $£ 14$ for each receiver. For a very cheap system, one receiver can easily be made to switch several appliances at little extra cost - although this will be somewhat inconvenient if appliances are moved around the house. tem is given in Fig. 3. A Nascom microcomputer forms the central control device. Binary data from the serial line interface which forms part of the frequency shifts, amplified and applied to the neutral and earth mains wiring. At the plug end the receiver detects the signal, demodulates it, converts the if the data so indicates - activates a triac circuit to switch the appliance on or off as required.
An 8 -bit data word is used, and for each plug one pre-determined word is used to switch it on and another to
switch it off. This gives a capability of controlling 128 separate devices although for economy only 4 bits, corresponding to on/off control of 8 devices were decoded in the prototype which we describe.

Transmitter

The transmitter accepts t.t.1.compatible logic pulses from the serial
Fig. 3. Block diagram of the simplex transmission system.

WIRELESS WORLD, DECEMBER 1979 output port of the Nascom microcom puter and modulates these into a which is amplified and fed into the mains wiring. To minimize radio inter ference, the transmitted waveform
should be as free from possible, and so a sinewave output is desirable. A pair of fixed-frequency, sinusoidal oscillators could be used for transmission by switching the output from one oscillator to the other with the
digital waveform. A simpler method is to have a single, voltage-controlled oscillator and to use the digital signal as the control voltage.
The low cost and ready availability of
single-chip, volta single-chip, voltage-controlled oscilla-
tors led us to use one, the Signetics NE566, for the prototype. This generates triangle waves, which have a strong fundamental with fairly low harmonic content. Still, substantially
greater bandwidth is used than with sine oscillator, and if it were intended to have different systems with different frequencies within a house, of if houseto house interference became a probfrequencies were used in ranshission eliminate it, we would revise our decision and reconsider sinusoidal transmission. The operating frequency of 150 kHz is chosen so that harmonies do not fall on BBC transmission frequen-
cies. In addition, the harmonics are filtered somewhat by the frequency response of the amplifier, and tend to be attenuated by the mains wiring. No radio interference trouble was ex-
perienced with the prototype. perienced with the prototype
Fig. 4. The first stage contains the 566 waveform generator and the components necessary to set the operating frequencies. Pin 5 of the 566 provides
voltage control over the waveform voltage control over the waverors
frequency. It is driven from the logic output of the Nascom serial line via a potential divider, and the $100 \mathrm{k} \Omega$ variable resistor controls the tone spacing. The $22 \mathrm{k} \Omega$ tuning potentiometer is in the sets the carrier frequency. This should be adjusted first, with the logic input high, to give a frequency of 152.4 kHz .
Then the logic level should be reversed Then the logic level should be reversed
and the $100 \mathrm{k} \Omega$ resistor adjusted to give

WIRELESS WORLD. DECEMBER 1979
the lower tone of 150 kHz . The controls should be repeated until both freque cies are correct.
The output of the waveform generator is coupled to the input of a simple led by the 220Ω resistor - we left it variable for experimentation. Additional circuitry is incorporated to remove the base bias from the output transistors so that the output appears as a high
impedance to mains signals. This allows the transmitter output to be disabled in a manner analogous to tri-state driving of a bus line. The output enable/disable control is connected to a programmable

Fig. 4. The transmitter circuit.
buffer gate To minimize th possibility of interference with radio or
 disabled when not in use. This also provides the control necessary for half

Demodulator

The receiver uses a phase-locked loop to detect the frequency-shift modulation The modulated signal is multiplied by the output of a voltage-controlled filtered, amplified, and fed back to the oscillator control input. Any change in the frequency of the incoming signa causes a corresponding change in the
hus, the control voltage
Thus, the control voltage itsel data. Demodulation using a phaselocked loop gives excellent signal-tonoise performance, even when the car rier is weak compared with the channe
noise. The loop is available cheaply as single integrated circuit - we used the single integrated
Signetics NE565.
The block diagram of Fig. 3 shows how the receiver is organized. Main solation is achieved by capacitive couThe filter rejects out-of-band noise and mproves the error performance of the receiver - in particular, it helps to educe the effect of impulsive noise on he phase-locked loop. A limiter the signal prior to detection by th phase-locked loop. The control voltage of the local oscillator, which is the demodulated binary signal, is further which provides a t.t.l.-compatible out put. A circuit diagram of the demodula tor is given in Fig. 5.
Bandpass filter. An active filter of the "negative-immittance converter" typ ponding passive circuit, and incorpor ates some gain, so that a passive limiter can be used as the next stage. The negative-immittance converter pro vides a high Q-31.5 for our design component stability. A detailed discussion of the filter is given by Clayton ${ }^{2}$ ours is centred on 151.2 kHz , the mean tone frequency, with a 3 dB bandwidth of 4.8 kHz to encompass the two tones.
The usual 741 operational amplifier does not provide a sufficiently high gainbandwidth product for our requirements and so an RCA 3130 is used. This heeds an external compensation

Fig. 5. The demodulator circuit.
 tone spacing is altered, for example, to permit data transmission speeds greater
than 1200 baud. .

Limiter. The filter output has a very
high impedance since it is taken from high inverting input of the operational amplifier. Hence, it is buffered by a
unity-gain 741 before being limited by two silicon diodes and a resistor. It is important that the input level to the NE 565 stays below $3 V$ to ensure that the
phase detector is operating in its linear phase detector is operating in its linear
region. The limiter produces a square wave of 1.2 V peak-to-peak, providing that the received signal on neutralearth does not fall below 40 mV .
Phase-locked loop. The NE565 is a general-purpose phase-locked loop, and
is suited to frequency-shift keying detection. Capacitive coupling is used at the input. The $4.7 \mathrm{k} \Omega$ variable resistor. allows fine tuning of the centre
frequency, which is arranged to be 151.2 kHz .

We will not describe the detailed design and operation of the phaselocked loop here (they are discussed in trols the damping of a low-pass filter There is a trade-off between the shortterm memory provided by the filter, which helps the loop to remain in lock if a momentary loss of signal occurs, and the speed with which the loop adjusts to damping factor of about 0.8 , which results in a time-constant of $1.2 \mu \mathrm{~s}$. The rejection offered to sum frequencies at around 300 kHz is about 12 dB , which is
sufficient for loop operation.

Output stage. The phase-locked loop leaves a residue of double the carrier
frequency in its output. This is attenufrequency in its output. This is attenuated by a passive low-pass filter with a
3 dB band-edge at 78 kHz halfway be3 dB band-edge at 78 kHz , halfway be-
tween the keying rate (1200 baud) and the tone frequencies (150 kHz). A 710 comparator completes the analogue part of the receiver, providing a t.t.1.-

Decoder and triac switch

The output of the demodulator is a serial bit-stream. This is converted to parallel format, decoded to see if the plug is being addressed, and if so, used to switch the mains supply to the applicircuit of the decoder and the triac switch.
U.a.r.t. At the heart of the decoder is a a.a.r.t. - universal asycnhronous serial bit-stream to parallel form. We used the AY-5-1013, simply because one was available in the laboratory: a since it requires less power supply voltages. The u.a.r.t. needs a clock whose frequency is 16 times the baud rate

Fig. 6. Decoder and triac switch
(9.2 kkH for 1200 baud), and this is When the rece tiver. When the receiver holding register of the u.a.r.t. has accumulated a word of available (DA) pin goes high. In order to ransfer data to the output lines, the received data enable (RDE) pin must be aken low. It was decided that if frame rrors (FE), parity errors (PE), or over should ignore the data. This is imple mented by the 4 -input NAND gate hich feeds the RDE pin. When the data has been strobed to the output pins by taken low to avoid overrun error when the next character arrives.
Several pins on the u.a.r.t. require programming to suit specific needs. We 37 and 38), and no parity chata bits (pin 37 and 38), and no parity checking (pin
35). Parity checking is omitted because the u.a.r.t. in our Nascom is not con nected to generate parity: this is unforfunther because it would increase further the overall reliability of the use in future versions.

Decoder. A 7442, 4-to-16 line decoder examines the output of the u.a.r.t. and the plug. Four of the data bits are not used, although it would be easy to ex tend the circuit to allow more addressable devices. Two of the decoder outputs are latched in cross-coupled NAND gates, which are set if the device is to be
turned on and reset if it is to be off. The other 14 decoder outputs are not used:
they provide control over plugs other

Triac switch. The latch output is control signal to turn the appliance on and off, a triac being used to switch the mains supply. This should be 400 PIV miting for the appliance. Firing the triac is accomplished by pushing and pulling current from the gate with respect to main terminal 1. Because this is con nected to the mains neutral, the triac hould not be driven directly from the neutral-earth signal path. Instead, an opto-isolator (Litronix IL74) is used. The triac operates as follows. When current flows through R, charging capacitor C_{1}. Eventually, the voltage across C_{1} reaches the diac breakdown voltage (33 V), and C_{1} discharges into the triac gate, driving it into conduction. Similarly, when live is negative
with respect to neutral, current is taken from the gate until the voltage across C_{1} reaches -33 V , when the triac is driven on again. Load current can thus flow in both directions. Capacitor C_{1} is chosen
to give a negligible phase angle. to give a negligible phase angle. charging capacitor is simply shunted. The direction of this current depends on the mains cycle, and so the 2 N 1711 is mounted in a diode bridge, to ensure
that it remains forward-biased.

From simplex to duplex

A full-duplex transmission system, where the plug can send information to the controller at the same time as the
latter is transmitting to the plug could easily be created by frequency-division

WIRELESS WORLD, DECEMBER 1979
multiplexing, so that different signal ling tones are used for the two direc-
tions. However, with several plugs one would have to decide if they could all transmit at the same time, and if so, each would need its own operating frequency. This is cumbersome, and
would increase tremendously the would increase tremendously the cost
of the controller hardware, since receivers would be needed for each frequency. We decided instead to use a single pair of tones so that only one This is a half-duplex system. This is a half-duplex system.
With half-duplex ensure that two different plugs cannot send at the same time, or use a protocol which can tolerate garbled transmissions. The former approach is more transmitting only on invitation from the central controller. (Use of the latter technique is briefly described in an earlier Wireless World article ${ }^{1}$.) If any appliance is autonomous in the sense
that it sometimes needs to initiate a transmission to the controller - as, for example, a thermostat might when the temperature exceeds certain limits then the controller must poll it regu larly.
On
One simple and useful mode of each plug, upon r-duplex system is for word which it recognises, to transmit the same word back to the controller. correct device has received the command. If the reply has not been received after a certain (short) time then the controller must try again, whereas if an incorrect word is returned, due to intended state of the erroneously addressed appliance as well as repeating the transmission.
Another useful facility is a manual over-ride switch at each plug. With
simplex transmission, an appliance is switched only from the central controller. Suppose you fit a manual over-ride so that you can turn off the electric blanket in your bedroom without
waiting for the programmed switch-off time or going downstairs to issue command on the control console. Then you must remember to reverse the switch in the morning so that the the controller turns it on at the pre determined hour the next night! How ever, with half-duplex transmission, the manual over-ride can be a push-button which signals to the central controller o. switch off the device. Then the state of each appliance. Note that this is an example of an autonomous change in state of the plug - the controller will need to poll regularly to detect when over-ride occurs. Incidentally, it will unplugged - since it will fail to respond when polled.
Technically, half-duplex transmission is quite a simple enhancement to th
simplex system described above. An essential feature is the "disable" input by the clamping diodes of Fig. 4. Each by the clamping diodes of Fig. 4. Each
plug, and the central controller, should only enable its output when actually transmitting information.
At the plug end, the u.a.r.t. generates as well as accepts serial information. T parallel output of the u.a.r.t. is strobed back into the parallel input (one bit being reversed by the manual over-ride switch if it is fitted), and the serial
output is fed into a transmitter identical with that of Fig. 4. Of course since only characters actually recognised by the plug should be returned, the strobe signal comes from the relevant outputs
of the 4 -to-16 line decoder of Fig 6 . The "end-of-character" pin of the u.art is used to enable the transmitter. This line goes low half a clock cycle before the digits appear at the u.a.r.t. serial output, and is connected to the transmitter to disable it, once the byte has been sent. and settle in much less than half a clock cycle ($25 \mu \mathrm{sec}$). The u.a.r.t. serial output controls the tone frequency of the ransmitter.
At circuitry of Fig 5 is replicated tor circuitry of Fig. 5 is replicated and serial input. Since the transmitter is much less expensive in components han the demodulator and decoder, the several plugs is much less than twice the cost of a similar simplex system.
We would like to thank the Depart ment of Electrical Engineering Science
University of Essex for providing excel lent development facilities in the third year project laboratory, and for its enightened attitude to microcomputer ectronics which gave a stimulating

References
References

1. Witten, I. H., "Computer Buses," Wireless
World, February and March 1979. 2. Clayton, G. B., Linear integrated circuit
applications, Macmillan 1975.

Warning notes

oints for experimenters to be aware of re: neutral is sometimes locally earthed by the supply authority in the phase multiple earthing system (p.m.e.) the equipment could interfere not only with the consumer's own appliances, by the authority; it may be found that the 10 W r.f. power causes an unaccept able level of radiation. The L.E.B. uses

ELECTRONICS 79
 OLYMPIA - LONDON 20-23 NOVEMBER 1979
 Electronic Components
 Show

The wares of about 380 firm - a third of them overseas companies - will be on show
in London at the bigest electronic ponents exhibition to be held in Britain fo two years. Called Electronics 79 and held
Olympia, $20-23$ November, it is really a inuation of the series that used to be know which rand for the long period of 34 years Show, It which ran for the long period of 34 years. It it
in fact an official event of the British elec ronic components industry, being sponsored by the ECIF (Electronic Components In
dustry Federation). Organizers are Industria dustry Federation). Organizers are Industria
and Trade Fairs Ltd. Opening hours ar and Trade Fairs Ltd. Opening hours are
$09.30 \mathrm{~h}-18.00 \mathrm{~h}$ each day, and entrance fee is E2.00, valid for the wholo eperiod.
The exhibition provides a sho
the latest developments in components fo communications, entertainment, science navigation, aerospace - a daticine, handling navigation, aerospace - a large range o
applications both civil and military. Amon active and passive components on show will be discrete semiconductors, integrated
circuits, chips, assemblies electrochemical components, non-electrical parts, hardware and materials, production equipment and
tools, instruments, tools, instruments, test gear and services. A
computerised enquiry service will enable computerised enquiry service will enable
visitors to locate specific products by stand number references.
Concurrently with the exhibition the ECIF
will be running a "Components of Assessed Quality". This will take place in the Pillar Hall, Olympia, $20-22$
November. The first day will be . November. The first day will be devoted to
electromechanical components, the second to passivec components and the third to active
components components, including microprocessors.
There is a fee of $£ 12.50$ (including There is a fee of $£ 12.50$ (including VAT) per
day for this event. Proceedings of the full day for this event. Proceedings of the ful
three days will be published at $£ 12.50$ per copy and will be available at the seminar. See Prestel page 45638
The following products that will be on show: Aerials. Ancillaries and services for electronics.
Batetiresend owwersources. Boovers and fans. Cabes
and wires Capaitors, fixed and variable. Cases.
cabinets, rack cab wires. Capacitors, fixed and variable. Cases,
canductors racks
inductors and trantings. Cathode ray tubes. Coiss inductiors and transtormers. Connectors, plugs and
sockets. Electronic roduction equipment. Fasteners
and fixings. Hardware, general electronic. Integrated
 pubticitions. Knobs, dials, drives and fititings. Loud
speakers, microphonss. autio assemblies. Magnets
and magnetic materials. Mater
plastion ${ }^{p}$
ponee
Preis
Power

Practical parallel-tracking pickup arm

Optoelectronic servo control gives low-inertia, fail safe operation

Despite the many advantages of the parallel--tracking record deck, the high cost of owning one is a considerable
deterrent to all but the well-heeled few. his fact prompted the design and construction of a pick up arm and con specifically in mind. By avoiding complex engineering it is possible to construct the design described with non-specialized ois in about 40 hours. Part 2 will give and a source of supply for certain parts.

CONVENTIONAL 9in pick up arm produces a tracking error of 2.3 degree nd hence a distortion figure of more han 0.7%. This is for an arm with opti mum parameters so any discrepancy sure to increase the distortion. The use f a longer arm to reduce tracking error not the answer, because of increased nertia and, as Randhawa points out ${ }^{*}$ some manuracurers have now ceased his. His article also highlights other hortcomings of the conventional arm, namely delay distortion introduced ith elliptical styli, and the need fo alance as well These factors combine o make the conventional arm some hing of a dubious compromise, es ecially in the context of recent deve pments in almost every other branch distortion introduced at this particular programme source make current effort o produce amplifiers for example with *Randhawa, T. S. Pickup arm design techniques, Wireless World, vol. 84 1978, March \&
vanishingly small harmonic distortion figure seem academic. By adopting the servo-assisted parallel-tracking technique, all the unarm can be resolved at a stroke. This idea has been around for many years, but has remained a pipe dream because of the difficulties involved in manufacturing a reliable control system to keep arms as typified by Garrard's Zero 100, whilst reducing tracking error, do not solve all the problems and introduce some new ones as well. An anti-skating device is sictional forces involved in moving the frictional forces involved in moving the
arm across the record are increased due to the extra linkages. Also, the extra mass of the pivot-head mechanism increases the overall inertia of the arm, which goes against the principles laid
down by Randhawa. It is interesting to note that the energy required to move the arm assembly across the record and thus actuate the pivot-head is derived from the record surface, whereas in the parallel tracking system the record is cause the servo-motor supplies the en-
An mportant benefit enjoyed by users of ser assisted parallel tracking The tracking arm described has an effective length of 7.25 in compared to 9 in for a conventional arm. Now if $I_{\mathrm{h}}=M R^{2}$ where I_{h} is the inertia of the arm about the pivot point, R the pivot-
to-stylus length and M the mass of the arm, then substituting the values for R given above

If M is equal for the two arms then the parallel-tracking arm shows a reduction in inertia of about 35%. In practice M can easily be made less despite the slight because the arm is shorter to start with. Being short, less material can be used in its construction without loss of stiffness. An overall reduction in inertia of around 40% should be feasible. As the
advantages of low inertia have been dealt with in detail in Randhawa's article, they are not repeated here.
Recently, with the advent of optoelectronics, a few manufacturers have produced workable paralleltracking arms by using a light-operated
switch mounted on a fixed reference arm alongside the actual tracking arm. Tracking errors are detected by the relative movement between the two arms and the error signal relayed to a servo motor. Unfortunately the production of an accu a a eptical switch, and the integration of the two on a moving platform, usually requires precision mechanical and optical engineering far beyond the capability of
most amateur constructors. These mechanisms are also very expensive, typically $£ 450$.
In this context, for a constructional project to be within the bounds of possibility, a different approach wus clearly required, particularly for the switching device. The following list of should not add significantly to the mass of the arm, impose little or no loading on the tracking arm, have negligible hysteresis between switched states, and be

Wireless worlo, december 1979 including capacitive and magnetic prox-
mity switches but all suffered one drawback or another. However, two devices were developed, one an optoelectronic proportional control
which is particularly suited to amateur construction as it needs virtually no optical engineering. The other device was developed after reading an article on the unique properties of mercury as
used in frictionless switches \dagger and although very accurate and quite easy to make, is not really suitable as a constructional project, as it uses p.t.f.e., nickel and mercury, but it is described other applications requiring a lowhysteresis microswitch

Optoelectronic system

Using the two-arm approach, a fixed reference arm and movable tracking the other. The lower arm is the reference arm and is fixed to a sliding platform pushed along a parallel track
by a lead-screw, details of which appear in part 2. The tracking arm is mounted on gimbals and holds the opto-switch in front of the end of the reference arm, which is a simple light-guide using an
 produces a vertical beam of light 0.06 in $(1.5 \mathrm{~mm})$ across and 0.2 in high which falls directly onto the sensitive face of two BPW34 diodes cemented side-byside in a small holder attached to the vented from reaching the diodes by a shroud fitted over the holder. Fig. 1 shows the general set up, and it will be appreciated from the diagram that the small physical size and square shape of this application.
The two diodes operate in a push-pull mode. When the light slit covers part of each diode equally, there is no effective an error current is produced which is fed to a simple current-to-voltage converter (the 741 in Fig. 2). The voltage output powers the tracking motor via an emitter-follower, and this voltage is which side of the two diodes the light slit moves. Vertical motion of the slit due to record warp has no effect. When there is no error current, the motor runs at a pre-determined speed correspon
ding to the average tracking speed, and is pre-set by the $2.2 \mathrm{k} \Omega$ potentiomete and Tr_{6}. The 13 V Zener diode simply limits the maximum voltage applied to he motor.
Besides excellent sensitivity, the ad like this is that light falling on the unit from outside produces no error signal †Linay, Engel \& Gibbs. Mercury as a switch

Fig. 1. Lower reference arm is fixed to sliding platform pushed along a parallel track motor-driven screw. Motor voltage is raised or lowered according to position of slit mage on photodiodes.
 7ो
Fig. 2. Motor runs at average speed set by $2 k 2$ potentiometer. Variable resistor of $47 k$ allows for spread in transistor $H_{f e}$ and different types of relay. Switches S_{1} and S_{2} are
microswitches; positions on rotary switch are fast forward 1 , fast reverse 4 (select R on test), play 2 and stop 3 . Chokes are motor interference suppressors.
liding platform, or if the filament bulb failed, or perhaps if the run-out groove at the end of a record is too large for the tracking motor to catch up. However ven if everything stops working, in cuding the warning system, the track ing arm will still track the record as a poor design parameters. This should give confidence to those who would hesitate to trust their records to the mercy of a servo-system. The system described avoids the us of lenses, prisms and mirrors, and still very sensitive, and can switch the tracking motor from full-ahead to fullstop within ± 0.2 degrees. The outline of the light beam is of course rather blur red at the edges and the intensity may
not be uniform, but this does not in practice affect accuracy. This is de termined by the differential action o the diodes and the voltage output of the
741 current-to-voltage converter which is $V_{\mathrm{s}}=-I_{\mathrm{i}} R_{\mathrm{f}}$ where R_{f} is the feedback
resistor in Fig. 2 . Thus the basic se
sitivity can be set by adjusting R
Much greater accuracy than ± 0.2 degrees may be obtained, even with this
ill-defined light beam, but to a large extent it is pointless as record eccen-. tricity begins to make itself felt at about this stage. To reduce the tracking error below ± 0.2 degrees to cater for record acting bi-directional servo system with no mechanical play in the moving parts, rather than the simple uni-directional system described, where the mechanical clearances are taken up
during forward motion. The law of diminishing returns enters here, and the cost of a complex servo system would not justify itself when a much better solution of dealing with eccentric
records exists. The meter included to monitor the voltage across the servomotor will clearly indicate where eccentricity lies and it is a simple matter to enlarge the centre hole and place the disc centrally on the platter. If the
eccentricity is the same on both sides, then with a little p.v.c. cement, a new permanent centre hole can be made to cure the problem once and for all.
The servo system consists of a motor-driven lead screw pushing a
sliding platform, on which the two arms and the gimbal assembly are carried, along a parallel track via a mechanical coupling. At first glance it may appear
easier to drive the platform directly easier to drive the platform directly
from the lead screw and dispense with the track, but in practice it is difficult to produce a sufficiently straight and accurately threaded lead screw to prevent instability in the platform move-
ment, for example side-to-side wobble. Even a hand-filed parallel track produces better results.
The motor originally used was a small

6 V motor from a cassette deck and wa resiliently mounted to avoid noise to avoid noise, rubber belt drive was used from motor to gears and from gears to lead screw, giving an overal reduction of 100:1. The gearing used
was a nylon worm gear, ideal because they require no lubrication, are silent in operation, produce the large reduction in a single step, and are easily assemb led. Matched sets of $40: 1$ are available
together with the associated hardware like shafts, bushes from good model shops.
When tracking a record, the motor
drives the platform at a steady speea corresponding to the average rate of travel of the tracking across a typical say. To ach- about 3in in 15 minutes, motor is preve this the voltage to the The opto-switch simply raises the voltage to the motor when the tracking arm lags behind the record, and reduces it to zero when the arm leads. The motor obviously has to have good self-starting properties for this system to work.
To return the arm to the sta position, the polarity of the supply to the motor is reversed and fed via a pre-selected resistor which limits motor speed to give a reasonable rate of return. On the prototype this was set at ably with rewinding times for a tape recorder. For general use this may be too long, in which case it would be a good idea to incorporate a gear-change on the motor to speed things up. The
prototype was used solely for tranprotibing disc to tape, hence two minutes was no problem.
\therefore For traversing fast forward, the motor is fed from the same pre-set resistor with the correct polaris.Anallel track
at each end of the parall switches the motor off automatically at precise positions corresponding to the run-in groove at the start of the record and the end of the run-out groove at the finish.
To
To cue the arm at any point on a structed as two platforms hinged together. The lower platform follows the parallel track, and the upper plat-
form carries the gimbals and the two form carries the gimbals and the two
arms. Cueing is achieved by tilting the upper platform through about 20° by

First constructional methods are not necessarily the best. Dual-purpose ligh slit with cue-bar to raise pickup arm found simplifications could be made to the hinged platform, pivot pillars and symbal, shown right and below
means of a small cam underneath operated by the cue lever. In this position the tracking arm rests lightly on small bar on top of the reference arm and records can be taken off, or put on Some accuracy is needed to make
such a hinged platform, as the errors introduced by play in the hinge cannot be easily compensated for, and even a little play at this point can produce errors of one degree. A hinge consisting screwed pivot points can be designed to have no running clearance, but gives stiff operation. A compromise can be reached by screwing in the pivot points until the weight of the upper platform
can just close the hinge. Such an can just close the hinge. Such an
arrangement does not wear very well, but any play can be readily taken up by tightening the pivots.
The MKL15 direct-drive motor and integral platter was chosen for the prototype as it was very easy to mount on a
plinth and has excellent performance. With this turntable, the parallel track needs to be raised $1 / 2$ in or so for the tracking arm to be on the same level as incorporated in the plinth to can be this raised platform.

To be continued

Prestel service starts in London

Prestel, the Post Office's viewdata system, is now available as a full public service to 3 3/
million people in the Greater London milion people in the Greater London area
to all those whose telephone numbers begi with 01 or are able to make local calls to 0 numbers (except those with shared-service
or coin-box lines). The Post Office felt suf or coin-box lines). The Post Office felt suf
ficiently confident to abandon the idea of market trial, which we reported on earlier and passed straight from their test service
(which began in September 1978) to the ful public service in October this year. Users can now access about 1 156,000 pages., from over
170 information providers, which are avail 170 information providers, which are avail-
able at four retrieval centres within the Ondon area: Wood Green (code name
Juniper): Shoe Lane in the Cite (code name uniper); Shoe Lane in the City (code name
Byron); Ealing (code name Atlas); and Byron); Ealing (code name Atlas); and
Eltham (code name Vigilant). It will be noticed that the code names are revivals
old London telephone exchange names. old London telephone exchange names.
All these local retrieval centres receiv Aheir information from à single "update centre" at Clerkenwell (code name Duke) which was set up to enable the information
providers to enter their information, and providers to enter their information, an
update it, at one centre only. This installation updates the four local centres automatically
and almost instantaneously and almost instantaneously
As we go to press the total
As we go to press the total number of users
connected to the service is 1606 . Of these 108 connected to the service is 1606 . Of these 1082
are users who were asked by the Post Office to take part in the test service mentioned
above. So far the total number made by users to the data base amounts to about $8,411,000$.
The cost to the user of retrieving an information page is made up of three parts: (1) the charge for a telephone call to the tocal
retrieval centre; (2) a time alased the use of the data base at the centre which the use of the data base at the centre, which
is 3 p per minute between 8 a.m. and 6 p.m. is 3 p per minute between 8 a.m. and 6 p.m.
Monday to Friday, or a cheap rate of 3 p per
three minutes between 6 three minutes between 6 p.m. and 8 a.m.
Monday to Friday and all day Saturday and Monday to Friday and all day Saturday and
Sunday; and (3) a' charge for each page retrieved on a system of prices ranging from
Op to 50 p a page. In addition there is a 66 connection charge and 15p quarterly rental telephone line to the viewdata television set. Users with a business line have to pay a
further $£ 12$ quarterly charg. further $£ 12$ quarterly charge busiewatat television sets, adaptors and
bubout terminals are now available from about 16 manufacturers. As an example of
the cost to a domestic user the Decca 26 in the cost to a domestic user, the Decca 26 in
colour set CZ1096, which also includes
teletext , can be bougt teletext, can be bought through the central
London dealer Tops TV Ltd for $£ 1225$; London dealer Tops TV Ltd for $£ 1225$, in-
cluding two years' service, or hired from the cluding two years' service, or hired from the
same firm on a three-year lease for $£ 45$ per month plus v.a.t. (and $£ 45$ for the whole of the fourth year). According to one commentator,
Richard Hooper of Mills and Allen ComRichara Hooper of Mills and Allen Com-
munications Ltd, this equipment side of
Prestel is at presen to Prestel is at present too expensive. Writing
inViewdata and TV User for October, he says in Viewdata and TV User for October, he says
"Prestel set prices must come down fast to
ensure a large residential Prestel set prices must come down fast to
ensure a large residential market \ldots But
somene somer someone somewhere has got to make a
heavy capital commitment to volume proheavy capital commitment to volume pro-
duction for the costs to come down. There is no public evidence as yet that such a step has
been taken."

29MHz mobiles repeaters and nbfm

During recent years there has been a considerable increase in amateur mobile operation using narrow-band frequency-modulation in the 28 MHz amateur band and a number of
"repeaters" have been established in the USA, permitting long-distance oper tion with low-power mobile and hand held equipment when the band is "open". According to Sam Voron,
VK2BVS in the Australian Amateur Radio there is now increasing interest in this type of operation in many parts of the world, including Scandinavia, Japan and Australia. Factory-built equipment,
including 80-channel 10 -watt mobile including 80 -channel 10 -watt mobile the market although much of the activity is with modified c.b. units and surplus military v.h.f., sets; 144 MHz to 29 MHz "transverters" are under development, while several firms now offer
n.b.f.m. adaptors for h.f. transceivers. Activity is normally confined to 10 kHz channels" between 29.3 and 29.5 MHz . The American repeaters have
100 kHz spacing between input and output channels, with the input channel on the lower frequency; some of these repeaters are "open" and activated by any incoming carrier, others use variety of access tones, including som
around $90-110 \mathrm{~Hz}$ and others around 1950 Hz . A repeater band plan lists four channels: Channel $1,29.520 \mathrm{MHz}$ 'in' and 29.620 MHz 'out'; Channel 2, 29.540MHz 'in' and 29.640 MHz 'out' and so on. The frequency 29.6 MHz is not used by repeaters but is a ghould be noted that frequencie below 29.5 MHz are used by satellites. The f.m. deviation should be limited to $3-5 \mathrm{kHz}$. World-wide operation either direct or through the repeaters should
prove possible for several years durin the sunspot maximum period

Vandals and

interference
The problem of deliberate interference to amateur transmissions, includin although not exclusively those through repeater stations, and vandalism of un creasing world-wide (not amateur alone, a joint BBC-IBA television relay near Glasgow was wrecked by vandals few months ago). The problems that have plagued the London GB3LO
144 MHz repeater have been reported on previous occasions, but in recen months appears to have extended to include an element of physical violence Pierce Healy, VK2APQ in Electronic Australia reports that "in a completely tion" vandals destroyed a two-year project for the setting up of a repeater
station on Mount Bindo in the Blue

Mountains of New South Wales, servin large area of the State and linking mateurs in the coastal areas with thos range. Legs of the metal tower carrying he wind generator were sawn throug at ground level causing the whol structure to crash to the ground an causing damage to the building housin Canberra and Melbourne have bee vandalised, and an experimental moon ounce project damaged
Following many complaints and with eur and Irish officials, a transmitt located in Eire that has for a consider able period deliberately interfered with 4 MHz nets has been traced and closed down. On the West Coast of the USA listed to combat malicious interference Electronics Australia although it long campaigned for the introduction of c.b adio in Australia has drawn attentio to some questions that need to be faced lar. The editor writes: "C.b. came to Australia a couple of years ago, amidst remendous barrage of publicity, sup ported by a whole range of people from 'progressives' through to businessmen
who stood to benefit financially ... but victory turned rapidly sour. C.b. users made headlines for obscenity, 'lar rikinism', standover tactics and othe questionable activities: the 'progress
ives' dropped it cold. C.b. ceased to be the 'in' thing and importers found themselves with huge stocks, which hey had no hope of shifting in shor order, even at giveaway prices - a problem that is still with us." It is a result of a so-called "c.b. murder" and the role it played in an unpopular strike of lorry drivers. Since Australian c.b. is due to be moved from 27 MHz to u.h.f. in
July 1982 it is suggested that "c.b. cer July 1982 it is suggested that "c.b. cer
tainly can't afford a repetition of thes recent events: what it needs above all ise is a low profile and improved inter al discipline

News from Holland

The national Dutch amateur radio sta ion, PA0AA, transmits news bulletin nglish every Friday evening, with imultaneous transmission on 1827 kHz $600 \mathrm{kHz}, 14,100 \mathrm{kHz}, 144.80 \mathrm{MHz}$ an 433.765 MHz between $1900-2130 \mathrm{GMT}$ An r.t.t. y. bulletin (45 baud) it trans news bulletins are at 1915 GMT and 115MT. Morse code exercises (in Eng ish and Dutch) are at 1930GMT (be ginners) and 2000 GMT (advanced) Code proficiency runs are transmitted each month at 2130 GMT .

From all quarters

Italian stations have gained the world's 10 GHz distance record in a remarkable eries of contacts that progressively aised the record to $550 \mathrm{~km}, 571 \mathrm{~km}$ $582 \mathrm{~km}, 589 \mathrm{~km}$ and then 633 km . Th $12 \mathrm{FZD} / 2$ and $14 \mathrm{CHY} / 7$ using 10 mW Gunnplexers and 1 -metre dishes.
The station PAOKKZ and a group of Dutch amateurs are now active on 4 GHz with equipment including an output of 4 mW and equipment made for amateurs by Microwave Associates. 24 GHz beacons are likely to be installed soon at GB3IOW on the Isle of high -power beacon on 1296.83 MHz which will radiate 400 watts e.r.p. from each of two aerials has been licensed with the call-sign GB3BPO and will be installed near Martlesham Heath at Leicester and Watford.
Over 80 per cent of the London centre candidates passed the first "multi hoice" Radio Amateurs' Examination ast May. The City and Guilds of London
nstitute have explained the long delay in announcing the results as being due problems with new processin equipment and have stated that this wil not occur again.
Peter Balestrini, G3BPT, who is to be he 1980 president of the RSGB has lon mergency ard with the amateur radio chairman of the Raynet Committe from 1967 to 1978 .
Richard Thurlow, G3Ww, of Wim blington, March, Cambridgeshire, has now confirmed two-way slow-ssan television contacts with stations in 10 countries, representing contacts wit more than 1300 different amateurs. A new 190-page book, "Amateur
Radio Operating Manual" edited by R. Eckersley, G4FTJ with contribution rom over 30 British amateurs has bee published recently by the RSGB. It in cludes much information, data an maps of value to h.f. and v.h.f. operators

PAT HAWKER, G3VA

NOBODY CAN DO IT LIKE SABTRONICS CAN. NOBODY!

We pioneered the first benchtop professional quality Digital Multimeter at lowest price anywhere. We sold tens of thousands of units around the world and are still selling.
Nobody has been able to beat our price/performance ratio.

Now we are making the impossible again. A $31 / 2$ Digit LCD handheld professional quality multimeter at an absolute low
price of only $£ 59.95^{*}$. But don't get sold yet, wait till you have price of only $£ 59.95^{*}$. But don't get sold yet, wait till you have

QUALITY, PERFORMANCE AND ACCURACY The model 2035A offers you long term accuracy with a laser trimmed resistor network, a stable bandgap reference element, and single chip LSI circuitry. Expert circuit design and board layout have reduced component count to the can measure $A C$ or $D C$ volts from $100 \mu \mathrm{~V}$ to 1000 V ; AC and DC current from $0.1 \mu \mathrm{~A}$ to 2 A ; resistance from 0.1Ω to $20 \mathrm{M} \Omega$. Typical DCV accuracy of $0.1 \% \pm 1$ digit
OVERLOAD PROTECTION FOR GREATER SAFETY Input overload is protected to 1000 V ($\mathrm{DC}+\mathrm{AC}$ peak). Ohm and current ranges are fuse protected. These features, plus a
high immunity to voltage transients, protect the 2035 A against uncertain input conditions. Input and battery eliminator acks are recessed to ad to operational safety.
Wait don't order it untill you have read further.
OTHER FEATURES FOR GREATER CONVENIENCE AND FLEXIBILITY
Automatic zero; Automatic polarity (+ implied, - shown);
Large $1 / 2^{\prime \prime}$ LCD readout with automatic decimal and low batte indicator, uses inexpensive 9 V transistor battery: 200 hour battery life; push button switches for easy-operation; light weight (only 11 oz); fits easily into a jacket $\mathrm{F} J$ cket; specially designed injection moulded rugged plastic case in beautifu 2 caliberation controls. Whether you are professional amateur, you should check out the Model 2035A for yourself

Making Performance Affordable
sabtronics 6
INTERNATIONAL INC

$$
\begin{gathered}
6 \\
4 \\
2
\end{gathered}
$$

Model 2035A as shown.
Model 2037A with temperature measuring circuitry $£ 69.95$.
Model 2035A as shown.

Send your orders with payment to:

TIMWOOD LTD.

 Telex 86892Please send me by parcel pos
_ Model 2035A
assembled and tested at $£ 59.95 \quad £$
_ Model 2037A
assembled and tested at $£ 69.95$
Model THP 20
Touch and Hold probe at $£ 9.95 \quad £$
Plus VAT at 15% and p.p. $£ 3.50$ each $£$
Total enclosed herewith

Name:

Addres
City:
Postal Code:

\qquad
\square

CIRCUIT IDEAS

Triangle-wave generator

A 30 -step staircase approximation to riangle wave can easily be achieved by using a c.m.o.s. up/down counter with -bit resolution. If 4 -bit resolution adequate, the exclusive-OR gate and
the first flip-flop can be omitted. The most significant four bits can be asynchronously preset with extra gating. The weighted current outputs are spmmed in a Norton op-amp and C
suppresses glitches caused by the 3900 's asymmetrical slew rate. Maximum perating frequency is limited by the $20 \mu \mathrm{~s} / \mathrm{V}$ negative slew rate. Note that the output period is 60 times that at the
nput and not 64 . Accuracy is mainly dependent on the weighting resistors provided that the supply voltage is high enough for the 4029 outputs to sourc sufficient current
T. Williams

Kent

We bring ${ }^{y}$

Analogue memory

The bilateral multiplexer in diagram (a) is connected to an array of capacitors to form an analogue memory which func-
tions in a similar way to a conventional r.a.m. Each sampling capacitor stores a charge which is dependent on the analogue input. Storage time is limited by the capacitor size, leakage current and permissible drift. With InF capacitors
the decay time is several hundred One application of this circuit is for
Onecond.

variable audio delay as shown in diagram (b). With a sampling rate of 50 kHz the delay is approximately $320 \mu \mathrm{~s}$, but clock frequency. The memory is used
in a read before write mode and effec tively forms a serial shift register G. C. Hammond Warwickshire

Band pass filter with high input impedance

Digitally controlled attenuator

This circuit provides attenuation in
increments of $11 / 2 \mathrm{~dB}$ from zero to $46^{1 / 2 d B}$. The first attenuator is a zero to $4^{1 / 2} \mathrm{~dB}$ version with two digital inputs
representing $1^{1 / 2}$ and 3 dB . Logic levels epresenting $1 / 2$ and 3 dB . Logic levels AD 7520 which then provides the correct
ratio of $V_{\text {out }} / V_{\text {in }}$. The attenuation in dB is $20 \log _{10}\left(V_{\text {In }} / V_{\text {out }}\right)$. The circuit is shown with a 741 , but for high frequencies a 318 or alternative can be used. Accuracy is limited by the AD7520, but the erro
A second circuit uses a 74LS138 3-to-8

P.w.m. control

In a p.w.m. power controller it is difficult to achieve smooth control to maximum power with a simple multivibrator. A modification to the standard op-amp multivibrator provides smooth ontrol from about a 15% duty cycle to
full-on with an almost constant oscillation frequency. The amplifier switches state when
the voltage on C reaches the voltage at the voltage on C reaches the voltage at
the junction of R_{3} and R_{4}. Diode D_{1} is fed the junction of R_{3} and R_{4}. Diode D_{1} is ed
from a potentiometer between the opfrom a potentiometer between the op
amp output and the -15 V rail. When the output is at -15 V , C discharges through $\mathrm{R}_{7}, \mathrm{R}_{1}$ and D_{1}. After the output has switched to +15 V , a current flows

through $\mathrm{D}_{2}, \mathrm{R}_{2}, \mathrm{R}_{7}$ and D_{1}. The maxi mum voltage to which C can charge is
dependant on R_{6} and R_{7} and if this is less than 7.5 V the op-amp remains in the
same state.
With the wiper of R_{7} at the top, R_{6} is
號 adjusted so that the circuit just stops oscillating, i.e. 100% duty cycle. If D_{2} is
fed from a potentiometer between the fed from a potentiometer between the
op-amp output and +15 V , the duty op-amp output and +15 V , the duty
cycle can be varied down to zero. The output can be used to drive a switching transistor or thyristor
D. K. Hamilton
Oxford University

Oxford University
line decoder to provide attenuation from zero to 42 dB , and three digital inputs represent 6,12 and 24 dB . A potentiometer is provided to adjust the circuit for unity gain with the digital
inputs high. The maximum error of the circuit, neglecting those associated with the AD7520, is less than 0.5%.
Connecting the circuits in cascade so that $V_{\text {out }}$ of the first feeds $V_{\text {in }}$ of the
second creates an attenuator which is controlled by five bits. The circuit can be turned off by removing the 5 V supply on pin 6 of the 74LS138.
S. R. Taylor
Ferranti Ltd generated by software, any symbo
based on seven segments and a decima point can be displayed. The HOLD input of the 8080 is used which sends the address and data bus outputs into the tri-state mode and allows peripherals to ference from the c.p.u. Digit selection is dependent on the least significant four bits of the memory address generated by the circuit and the state of the segments is controlled by the output of the
memory on the data bus. While the memory on the data bus. While the
c.p.u. is not being held, the last received digit and segment data are stored in latches. A display buffer comprising 16 bytes of r.a.m. is required to store the to be displayed in succession it is advis able to incorporate an incrimental loop to allow time for the display to be read. $\mathrm{IC}_{\mathrm{lb}} \mathrm{IC}_{4}$ and IC_{5} divide the clock to produce the lowest four bits of the
display buffer (the upper 12 bits wired into the circuit) and after decoding, the HOLD signal. Outputs from the dividers are gated to produce a pulse every 1 ms which sets a flip-flop whose output feeds the HOLD input of the
c.p.u. and remains until cancelled by HOLD acknowledge. IC ${ }_{12}$ delays the HOLD acknowledge signal because the address and data bus outputs from the c.p.u. become non-conductive after the
HOLD acknowledge goes high ment data from the data bus is clocked into an 8 -bit data latch by the HOLD acknowledge input and the digit to receive this data is selected by decoder
IC ${ }^{1 C_{g}}$.
The segment and digit outputs should be buffered and the clock should be 8224 clock generator or any t.t.l. compatable oscillator. The table of possible characters shown makes a very pass N. Granger Bro

Solihull
W. Midlands

Charactir	As fisplated	Stementr .used	Hex Code
0	\square	abcdef	FC
1	1.	e \dagger	OC
2	E	abdeg	DA
3	3	abcdg	F2
4	4	bcfg	66
5	5	acdig	B6
6	\square	acdefg	BE
7	7	$a b c$	EO
8	G	abcdefg	FE
9	\square	abcfg	E6

WARC and the radio amateur

In January of this year the UK Home Office
Radio Regulatory Division published a 300 page document containing the UK's s propo-
sals for WARC 79 (see p. 57 June 1978 issue sals for WARC 79 (see p.57, June 1978 issue
and p. 47 , July 1978 issue). Contained within this document were the UK administration's proposals for the radio amateur service into
the 21 st century. WARC, as readers may the 21 st century. WARC, as readers may
know, is currently in session, but by the time know, is currenty in session, but by the time
this issue is published the fate of the radio amateur may already be decided
The portions of the frequency spectrum.
which are of importance to the radio amateur are, for convenience, 150 kHz to $4 \mathrm{MHz}, 4$ to $27.5 \mathrm{MHz}, 27.5$ to $1215 \mathrm{MHz}, 1215 \mathrm{MHz}$ to
10 GHz and 10 to 275 GHz . We will consider 10 GHz and 10 to 275 GHz . We will co
each of these 'sub-spectrums' in turn.
150 kHz to 4 MHz
At present the radio amateur in the UK
enjoys access to 500 kHz of the sub-spectrum enjoys access to 500 kHz of the sub-spectrum
from 150 kHz to $4 \mathrm{MHz} ; 200 \mathrm{kHz}$ as a secondary service, and 300 kHz as a primary ser-
vice. The secondary allocation in the band 1.8 vice. The secondary allocation in the band 1.8
to 2 MHz , means that the band may only be used for mamateur operation under only bertain circumstances, to protect the primary ser-
vices who share the band. This particular vices who share the band. This particular
band does not permit r.t.t.t. operation either. In the 3.5 to 3.8 MHz band, an amateur service may operate on a primary basis, sharing with
fixed and mobile services. It is proposed that the current 1.8 to 2 MHz It is proposed that the current 1.8 to 2 MHz be deleted and replaced by an exclusive
amateur-service allocation, but at the ex-amateur-service allocation, but at the ex-
pense of a loss of bandwidth. At present the pense of a loss of bandwidth. At present the
amateur shares this band with fixed and mobile services and UK and other administ-
rations may allocate up to 200 kHz to an rations may allocate up to 200 kHz to an
amateur service within the band 1.715 to 2 MHz , permitting a mean power not exceeding 10 W . The new band, from 1.809 to
1.914 MHz is only 105 kHz wide but it is 1.914 MHz , is only 105 kHz wide but it is
intended to provide an exclusive worldwide allocation for amateur radio.
In the case of the $80 \mathrm{~m}, 3.5$ to 3.8 MHz ,
amateur band the picture is even worse for amateur band the picture is even worse for
the amateur. It is proposed that the present 300 kHz , which the amateur shares with fixed and mobile services, be replaced by an 85 kHz ,
3.615 to 3.7 MHz , exclusive amateur allocation and a $200 \mathrm{kHz}, 3.7$ to 3.9 MHz , secondary amateur allocation. The secondary allocation
will mean that the a mateur will not be will mean that the amateur will not be
guaranteed access to the band because the primary servicess, which would be fixed and mobile, would be protected first. It is pro-
posed that the remaining band 35 to posed that the remaining band, 3.5 to
3.615 MHz , be given to maritime mobile and land mobile services.

4 to $\mathbf{2 7 . 5 M H z}$

Asfar as the sub-spectrum from 4 to 27.5 MHz is concerned, the radio amateur stands to
gain from the UK proposals. The 40,20 and gain from the UK proposals. The 4,20 and
$15 \mathrm{~m}\left(7\right.$ to $7 \mathrm{MHz}, 14$ to $14.35 \mathrm{MHz}^{*}$ and 21 to 21.45MHz) bands are expected to be retained,
permitting amateur and amateur-satellite
peration as before, but the amateur will nd 12 m (10.1 to $10.2 \mathrm{MHz}, 18.568$ to
8.768 MHz and 24 to 24.3 MHz) It should 8.768 MHz and 24 to 24.3 MHz). It should be
noted that there is no proposal in the document to permit an amateur-satellite service access to these new bands. At present, the
bands from 10.1 to 11.175 MHz and 18.068 to 19.9 MHz are allocated to the fixed service, and the band from 23.35 to 24.99 MHz is
allocated to the fixed and land mobile ser allocated to the fixed and land mobile ser-
vices. The new bands were proposed mainly vices. The new bands were proposed mainly
to meet the increased demand for frequency space for a mateur radio, but the 17 m band is also required to reduce the gap between the mateur bands.

27.5 to 1215 MHz

No major gains are to be made by the radio mateur in the 27.5 to 12125 MHHz sub-spec
rum proposals. The 10 m (28 to 297 MHz) trum proposalis. The 10 m (28 to 29.7 MHz) amateur-satellite operation, should be un-
oucher, and although the amateurs were touched, and although the amateurse were
hoping for a proposed allocation at 50 MHz one was not forthcoming. At the moment the 6 m band from 47 to 68 MHz is allocated to broadcasting, but the UK proposals suggest a
reallocation to the broadcasting and land mobile services. Some see in this the remote possibility that the land mobile permit might ee a way towards a 6 m band for the radio
amateur, even though this proposal was made to meet the growing needs of land nobile services in some countries.
The 4 m .68 to 748 MHz fixed The $4 \mathrm{~m}, 68$ to 74.8 MHz , fixed and mobile and amateur-satellite band remain un ouched. At present the 70 cm , 430 to 440 MHz band is allocated on a primary basis to
radiolocation and on a secondary basis to mateur radio. It is proposed that this emains the same, which is a disappointmen othe UK amateur because in the rest a
Region 1 the amateur service has primary access to this band. The proposal does, how ever, open up the 432 to 440 MHz band to the amateur-satellite service, which is good new
for the amateur because at present this service is only permitted in the band 435 to
338MHz 438 MHz .

1215 MHz to 10 GHz

In the 1215 MHz to 10 GHz sub-spectrum, the amateur service stands to lose a portion of its 215 to 1300 MHz is moment the band from 1215 to 1300 MHz is allocated on a primary
basis to radiolocation and on a secondary basis to amateur radio. It is proposed that the band 1244 to 1300 MHz should remain on a
primary basis with radiolocation but be used primary basis with radiolocation but be used
on a secondary basis by amateur radio, earth on a secondary basis by amateur radio, earth
exploration satellite, and space research,
The The Home Office believes that the amateurs loss of 1215 to 1240 MHz is acceptable to
amateur interests in view of the retention of the other part of the original band, but this is to be regretted by the amateur movement
because it sees the possible need for more
spectrum in the future as a result of an
increase in amateur television.
If the proposals are carried, the amateur If the proposals are carried, the amateur
service will make a small gain in the 13 cm ,
2300 to 2450 MHz , band. This band is curently allocated on a primary basis to the ixed service and on a secondary basis to mateur radio, mobile and radiolocation
services. The UK proposals suggest that this emains the same but with a permit for econdary amateur-satellite operation in th
300 to 2310 MHz band. The 9 cm band, 3400 to 3475 MHz , presently allocated on a primary basis to fixed, mobile nd fixed-satellite services and on a secon dary basis to radiolocation and amateur
radio, remains the same, as does the 6 cm band, 5650 to 5850 MHz , presently allocated on a primary basis to radiolocation
secondary basis to amateur radio.

10 to 275 GHz
Quite important allocations, as far as the mateur is concerned, are proposed in the 10 to 275 GHz sub-spectrum.
In the 3 cm band, from 10 to 10.5 GHz , radiolocation currently has primary allocation and amateur radio has secondary allo-
cation. While these allocations will remain cation. While these allocations will remain permitted on a secondary basis between 10.3 nd 10.375 GHz .
The 12 mm bands, 24 to 24.05 GHz , presently allocated on a primary basis to the
mateur and amateur-satellite services, and 2.05 to 24.25 GHz , presently allocated on a primary basis to radiolocation and on a secondary basis
remain the same.
Four new bands are proposed for amateur and amateur-satellite services. The 7 mm
and, from 40 to 41 GHz , is allocated to the xed-satellite service at present but the oposed that this be reallocated from 40.5 to 41 GHz for fixed and mobile services on a primary basis and for amateur and amateursatellite services on a secondary basis. The

other three new allocations would fall in the | ther three new allocations would fall in the |
| :--- |
| mm band, 48 to 50 GHz , the 4 mm band, 71 to | 84 GHz , and the 2 mm band, 152 to 170 GHz which are presently not allocated. It is proposed that 49.5 to 50 GHz be used for fixed

and mobile services on a primary basis and for amateur and amateur-satellite services on a secondary basis. An allocation for radiolo-
cation, on a primary basis, and amateur ana amateur-satellite services, on a secondary basis, is proposed for the 71 to to 76 GHz band, mateur-satellite services is proposed for the 160 to 165 GHz band.
No change is proposed in the spectrum
above $275 \mathrm{GHz}(1 \mathrm{~mm})$, which is not allocated above 275 G
at present.

G8AUU
In the UK at present, 14 to 14.25 MHz may be used for amateur and amateur-satellite operation, but 14.25 to 14.35 MHz may only be
used for normal amateur operation.

Better radio communications coverage needed for 21st century

Since the radio spectrum is limited, the increased communication demands expected efficiency of use of the spectrum to a "toler able saturation level" and by more use of
wide-band cable for point-to-point transmission. Radio spectrum efficiency can be improved by better methods of coverage perhaps using satellites, and by more aa operation" between receiver and trasmitter hese were some of the points made recently y Charles Sandbank in a wide-ranging ury" which was his inaugural address a ew chairman of the Electronics Division of the IEE. Mr Sandbank is head of the BBC
Researicin Departinti. Our present method of allocating frequen-
cies, said Mr Sandbank, "on the basis of signals decaying along the earth's surface to level giving sently low co-channe aside long-distance h.f. transmission, "l.f. m.f, and v.h.f. frequencies are allocated on by a much larger sterilised area where signals are too weak for satisfactory reception but to strong to allow the frequency to be uused
by other transmitters. If one calculates the seful service area as a percentage of the usea service area as a percentage of the
area which has to be left unused to keep co-channel interference at an acceptable evel on a particular frequency and polarisa
tion, then one obtains a figure which is tion, then one obtains a figure which is
generally less than 12% for the coverage efficiency.
The main feature of communications
satellites so far, went on Mr Sandbank, been their ability to provide a platform for aerials high enough to avoid the line-of-sight
limitations for long-distance wideband comlimitations for long-distance wideband com providing a sharply defined service area may become a more important function of satellites than providing large area coverage.
Although no special attempts have been made to use antenna aperture to optimise coverage efficiency current plans for broadcast satellites give about 30% coverage
efficiency per channel compared with 12% for efficiency per channel compared with 12% for
the terrestrial stations." He said his comparison was not strictly fair because he was vh.f. terrestrial practice, "but in principle the v.f.f.terrestrial practice, "but in principle the
efficient space-division multiplex possible with satellite-mounted antennas need not be
restricted to restricted to microwave frequencies. Large
aperture satellite antenna arrays seem a cost-effective way of solving future radiospectrum allocation problems.
Another way of confining radio transmis-
sions to wanted areas in order to improve efficiency was the increasing use of directional aerials and radiating cables. An example
was the was the allowance made for the directivity of
receiving receiving aerials in the planning of u.h.f.
television broadcast transmissions. "This would bring the coverage efficioncy. up to
about 30% for receiving antennas having a discrimination of 15 dB , although in practice
this this efficiency is not achieved at u.h.f. be-
cause of the effect of topography." But he felt that the future lay in "very much greater co-operation between the receiver and
transmitter to reduce the effect of the un-

The Post Office has announced a change in
policy which will enable customers, from
policy which will enable customers, from
next year, to buy as well as rent telephone antswearing machines from PO-approved sup-
pliers. A PO spokeswoman told Wireless pliers. A PO spokeswoman told Wireless
World that this had been made possible because of progressive developments in the
manufacture of the machines, and had been manuuacture of the machines, and had been
decided before Sir Keith Joseph announced moves which might effect an early relaxation of the
munications monopoly (see News Nov. ${ }^{\prime} 79$ issue).
For
For many years customers have been en-
couraged to use answering machines as courage attachments provided that the units private attachments provided that the units
met the corporation's technical requirements
and that they were used on a rental basis only so that they could easily be traced for
modification when necessary. Despite this, non-approved units are regularly advertised
and presumably sold by a number and presumably sold by a number of com-
panies in the UK through the press medium After January 1,1 1980, answerings-machine
suppliers will be able to submit their produn suppliers will be able to submit their products
for Post Office evaluation on the basis of sale as well as hire. The machines will still need Post Office permission to be used on the
public network to ensure that they meet the requirements for safety and system compatibility. The Post Office expects that the
revised arrangoments revised arrangements will come fully into
operation as soon as practicable after
April 1, 1980.

Racal Electronics Group, who were responsible for supplying communications equipment for the Transglobe Expedition which set off from London in September to travel the world over wife via a 1500 mile radio link. Rebecca Sheppard, wife of Oliver Sheppard, one of the three leading members of the team, led by Sir Ranulph Fiennes, spoke to her husband from a Racal

wanted signals." The BBC's Carfax broadcast
traffic information system was an example of this (see January 1978 issue, p28, for details) For mobile communication there were the
techniques of techniques of dynamic frequency sharing which was essential, and spread spectrum
transmission, which could lead to greater efficiency and flexibility in spectrum utilisation when channels were used intermittently (see News, October issue p54). There were
also developments in military radio where "highly sophisticated technology is leading
to a quantum step in the degree of coto a quantum step in the degree of co Array signal processing whereby active an tenna arrays are used in conjunction with the fast on-line signal processing will lead to a
high level of wanted-signal acquisition in the high level of wanted-signal acquisition in the
face of multipath and jamming. It is only a matter of time before these techniques of beam switching and null steering can be
realised in consumer products."

PO-approved answering machines

may now be bought

New IEE president

On October 1, 1979, Professor John Brown,
D.Sc(Eng), F.I.E.E., succeeded Sir D.sc(Eng), F.I.E.E., succeeded Sir James
Redmond as president of the Institution of Electrical Engineers. Professor Brown is
presently head of the department at Imperial College. London department at Imperial College, London.
Professor Brown's research interests are in the fiessord of electrtical communications -
particularly in the aplication particularly in the application of antennas
and guided-wave systems. In addition to and guided-wave systems. In addition to
Proc.-IEE papers, he has published books on
"W. "Microwave leesses," "Radio surface waves"
with H. M. Barlow and "TT with H. M. Barlow, and "Telecommunica-
tions" with the late Dr E. V. Glazier. tions" with the late Dr E. V. Glazie in engineering education and during his association with the IEE he has been a Training, which are associated with the CEI and the WFEO. He is chairman of the SRC
Engineering Board and was chairman Engineering Board and was chairman of the Standing Committee on Broadcasting, a
small group, independent of the IEE, which attempted, the task of looking tha all aspects of
the interaction between engineering the interaction between engineering and society.

Radio paging uses broadcast network

A nationwide radio paging system, using the
whole of the country's network of v.h.f.f.f.m. broadcasting transmitters, has now been
operating in Sweden for over a year. Anyone. carrying a paging receiver can be contacted anywhere in Sweden by a call from any
telephone in the country. The telephone call telephone in the country. The telephone cal
transmits a digital code giving both the code number of the intended recipient's paging
receiver and the telephone number of the receiver and the telephone number of the
caller. This code goes to a central equipment calier. This code goes to a central equipment
at OOrebro and from there to all the 120 v.h.f. sound broadcasting stations, which transmit
it on a 57 kHz subcarrier on the frequency it on a 57 kHz subcarrier on the frequency
used for Sweden's third programme (P3). used for Sweden'
When its own coded signal is received the paging receiver gives a warning "bleep" to to
the person carrying it. In one variant of the the person carrying it. In one variant of the
system the pager then shows on an 1.e.d. system the pager then shows on an 1 .e.d.
display the telephone number of the caller; in another variant the person paged goes to a
telephone and rings a special exchange in telephone and rings a special exchange in
Örebro and from this hears the caller's
number s
machine.
Using as it does an already established Mroadcasting network, the system, called Telecommuniconomically and the Swedish set it up, claims that the calls, at 0.34 Swedish Kroner each, are cheap. It has a capacity of 300,000 subscribers, and the paging number of each subscriber can be entered in th dinary telephone number. At present the pocket-sized paging receivers used are ones made by the Japanese firm Mitsubishi ben A whole group of pagers can be alerted by one telephone call.
The subcarrier system on the f.m. broad
casting transmitters is the same as that casting transmitters is the same as tha
developed in Sweden for programme labelling (see News, December 1978, p.50). The
1200 baud binary code signal is fist made to phase modulate a 1187.5 Hz square wave
($1 / 16$ of the broadcast pilot tone frequency) and in order to minimise interference with
the normal stereo broadcast signal a symthe normal stere o broadcast signal a sym180° phase shift and a ainary "0" procuces no phase change. After filtering, this phase
modulated square wave is used to productmodulate a 57 kHz subcarrier, which is locked in phase (with a 90° shift) to the third harmonic of the 19 kHz pilot tone - this phase
relationship being adopted again to reduce interference. The two sidebands generated in the modulation process are added to the multiplex stereo signal, which then
frequency modulates the transmitter's carrier. The paging/programme-labelling code
signal accounts for $\pm 3 \mathrm{kHz}$ of the total designal accounts for $\pm 3 \mathrm{kHz}$ of then
viation in the transmited signal. viation in the transmitted signal.
The binary code system used is an error The binary code system used is an error-
correcting type which is able to correct bursts with up to 5 bit faults per block Further reliability is provided by a system to
cope with faulty transmitters. If a fault cope with faulty transmitters. If a faul
occurs in a transmitter the MBS signal is
automatically switched to another noe .he automatically switched to another one. The
coding system of the paging calls is arranged coding system of the paging calls is arranged
so that the caller dials three sets of decimal numbers: first, a four-digit decimal numbe which gives access to the whole paging system; second, five digits forming the called; and third, seven digits which ar the caller's own telephone number.

New course for broadcas

 engineersA post graduate course for broadcast transmitter engineers has been launched at Newcastle upon Tyne Polytechnic for the Inde-
pendent Broadcasting Authority. The course is part of an eighteen month training scheme, developed by the IBA, which will lead to the first-ever nationally-recognised diploma in
broadcast engineering. It is designed to mee broadcast engineering. It is designed to meet
the broadcasting demands of the 1980s and includes the introduction of the fourth television channel and the ex
Independent Local Radio (ILR).
Newcastle Polytechnic, which was
selected by the IBA from Nelected by the IBA from polytechnics
throughout England and Wales is providing throughout England and Wales, is providing
an intensive six-months study in the theory an intensive six-months study in the theory
of advanced broadcasting technology. The students, and there are eighteen of them on this years course, which started at the end of
September, also receive specialist training at the IBA's own training college, the Harman Engineering Training College at Seaton,
Devon. Here they gain first hand practical Devon. Here they gain first hand practical
experience in the IBA's transmitter stations. If everything goes according to the IBA's plan, about twenty students will benefit from the scheme each year. The Authority also
hopes that overseas students will be admitted in the future.
This year's
This year's students, when they complete
their training at the end of 1980 , will be their training at the end of 1980 , will be
qualified to take up positions as IBA mainte nance engineers. In this capacity they will be
nesponsible for helping to keep responsible for helping to keep over 480
television and radio transmitters in England Scoletland, Wales and Northern Ireland onScotland,
the-air.

Teletext goes ahead

A boost for the chances of selling the UK
teletext system abroad is announced by the BBC. Esmeralda, the computer' originally
used for the BBC Ceefax facility, has been replaced by a system developed by Logica in
collaboration with the BBC, and named Selene.
This second generation of text-handling
equipment is composed of three PDPII/34s one of which (A) will cope with sixteen input v.d.us. The second computer (B) inserts the
Ceefax data into the transission Ceefax data into the transmission chain,
while the third is a standby. Increased speed of access to the computer by journalists will be one advantage of the new equipment,
since the v.d.us and computer commin since the v.d.us and computer communicate
at $9600 \mathrm{~b} / \mathrm{s}$ and, as blank lines in the teletext page' are not to be transmitted, waiting time at the receiver will be less. Logica are to
market the system throughout the world. A further benefit is the extension of the old
set of 96 characters by 165 new ones, which include those used in most European languages. This is the result of a compromise, in
that the parity bit is to be used to call up, the that the parity bit is to be used to call up the
additional characters instead of protecting the data. It has been found, say BBC engin-
eers, that the teletext singal can manage eers, that the teletext signal can manage
without the protection. If parity is left at without the protection. If parity is left
'odd' as at present, the old set of characters will be seen: changing it to 'even' will produce the new set in lower case when a
graphics control bit is introduced, while an alphanumeric control will give capitals. The slow progress of teletext in the UK has given cause for concern to broadcasters, but
Colin McIntyre, Ceefax editor, points out Colin McIntyre, Ceefax editor, points out
that there are now 32000 sets in use, and that
the number is increasing at the rate of about the number is increasing at the rate of about
3000 per month. The rate has improved since 22in teletext sets became available. 22in teletext sets became available.
BBC Ceefax now employs twenty ists and puts out around 400 pages on the two that a further two pages in the vertical that a further two pages in the vertical
flyback interval will be made available, to increase the number of pages or reduce

Nobel Prize awarded for

services to tomography

The Nobel Prize for Physiology and Medicin
has been awarded to Godfrey Newbol Hounsfield and Allan M. Cormack for thei services to computer-assisted tomography -
a technique for constructing threetechnique for constructing th
dimensional X-ray images of opaque solids. Godfrey Hounsfieid is a credit to the en gineering profession, if only because he is one
of the very few Nobel Prize winners who doe not possess a degree qualification. His inter est in electrical engineering started when he was a schoolboy and worked on his own ormal training probably began just after the Second World War at the Radar School of the Royal Air Force College, Cranwell, where he Communication, and later took up a post as ecturer. After obtaining a diploma a araday House Electrical Engineering Col lege in Londen,
radgineer. He later specialized in computers and became distinguished as e project engineer for the EMIDEC 1100 one of
puters.

The members of the International Satellite
Consortium, Cosmos, have agreed to coConsortium, Cosmos, have agreed to co for a further three years. The agreement was signed by senior executives of each of the
consortium's members, one being Marconi

Cosmos extends European space agreement

Space and Defence Systems Ltd, at a meeting
in Paris recently in Paris recently.
The first Cosm The first Cosmos agreement was esta-
blished in 1971 and during its lifetime the most celebrated success is probably the weather satellite, Meteosat. Current activ-
ities include ESA's Exosat, which is due for ities include ESA's Exosat, which is due for
launch in 1981, and ESA's and Ford Aeronautics Communications Corporation's provision of the first eight spacecraft so far
ordered for the global Intelsat V programme.

Marconi to develop tactical scatter system

Marconi Communication Systems Ltd has
been awarded a contract by the British been awarded a contract by the British
Government to develop a new tropospheric scatter communication system to provide Iong-distance multichannel tactical com-
munications links of the kind which are necessary on the modern battlefield. The
system, designated as the H7450, will have a systere antenna option which will make it
singlit
particularly satricularly suitable for, military applica-
pions. It will require only a small crew and
tion tions. It will require only a small crew and,
could be deployed in the field with minimum could be deployed in the field with minimum
effort, either from a fixed base or from a transportable tactical system. The equip-
ment, which is to be designed to the rigorous environmental standards set by the British environmental standards set by the British
Ministry of Defence, will be suitable for
either digitial or analogue transisision and either digital or analogue transmission and
will carry up to 300 frequency-division mul will carry up to 300 frequency-division mul-
tiplex voice channels.

In the late 1960^{\prime} s, when he was working on pattern recognition by computer, Hounsfield
came upon his idea for computer-assisted tomography, which eventually resulted in

Cormack, who was working in the independently and in mutual ignorance of
Hounsfield first cime X -ray tomography in the late 1950's. He published papers in 1963 and 1964 describing pue mathematics of the technique and the results of an experiment which he carried out
using gamma rays on perspex and aluminium using gamma rays on perspex and aluminium
models) to back it up, but being a theorist and
probably lacking Hounfield's models) to back it up, but being a theorist and
probably lacking Hounsfield's thirst to put
his ideas into practice his his ideas into practice, his ideas were soon
forgotten. t was not until 1971, when Hounsfield's prototype brain scanner was installed at Atkinson Morley Hospital, Wimbledon,
that Cormack heard that Hounsfield had that Cormack heard that Hounsfield had
independently developed the idea and had built a working machine. Cormack, who in
fact was born in Johanesburg of Scottish fact was borrin in Johannesburg of Scottish

parents, politely wrote Hounsfield a letter of | $\begin{array}{l}\text { parents, politely wrote Hounsfield a letter of } \\ \text { congratulation. }\end{array}$ | $\begin{array}{l}\text { will carry up to } 300 \text { fr } \\ \text { tiplex voice channels. }\end{array}$ |
| :--- | :--- |

Astables: basic configurations

by Peter Williams, Ph.D. Paisley College of Technoluyy

Dual op-Ane Astariess

There are four distinct realizations of the single null or astable using an operational amplifier: the capacitor may be grounded or not and may be connected to either the inverting or the
non-inverting ingut. Two of these will switch permanently into a latched-up state because in one case there is positive but no negative direct feedback, while in the other the positive feedback exceeds the negative feedback. The remaining two are both capable though the first, type 1 is by tar the most common. In each the overall negative feed dack ensures that the circuit can ensures that the loop gain to alternating signals produces regenerative switching - in the first form by inhibiting a.c. negative feedback and in the second by increasing the a.c. positive
feedback. Type l is often interpeted as a Schmitt trigger circuit with the amplifier and potential feedback. Type lis often interpreted as a Schmitt trigger circuit with the amplifier and potential
divider treated as a unit and producing a square wave - the RC section then appears as an divider rreated as a unit and producing a square wave - the $R C$, se
integrator providing a near-triangular wave if the amplitude is small.

When an amplifier of very high gain forms part of a feedback system, the input voltage and
current both tend to zero while the output voltage and current can take up arbitrary values current both tend to zero while the output voltage and current can take up arbitrary values depending on the signal source and the load. The nullator is a one-port defined as having $v=0$,
$i=0$ and the norator a one-port with v, i arbitrary. A nullator combined with a norator is called nullor and may replace any infinite gain amplififer in feedback systems. Practical amplifiers with finite gain modify the resulting equations and behaviour but retain the basic nature of each
circuit subject to the gain being high enough. The two circuits shown contain only one reactance with three resistors defining the characteristics. The bridge is activated by either one or two nullors, the constraint with operational amplifiers being that one side of each norator has to be grounded - op. amps with fully floating outputs not being generally available. As shown
the nullors give no information on the phasing of the amplifiers and this has to be determined by considering each of the possible implementations in turn.

With two amplifiers there are eight distinct configurations corresponding to two different capacitor locations, coupling or feedback, with four different combinations of amplifier phasing for each location. Five of these contigurations suffer from latch up with the remaining three
either having overall direct negative feedback or with direct negative feedback over each stage either having overail irect negative feeebback or with direct negative feeerback over each stage
separately and with capacitance coupling to isolate the stages. The first of these is type III, closely related to type a. The first stage is a standard. inverting integrator which guarantees a triangular output for a square-wave input. The inversion requires the following circuit to be a
non-inverting Schmitt circuit to restore the same phasing as in type 1 . The triangular wave levels at which switching occurs are defined by the square-wave amplitude and the ratio R_{1} / R_{2}. Assume the Schmitt output is negative. The integrator output increases until it drives current
through R, sufficient to neutralize that fed back through \mathbf{R}_{2}. This drives the Schmitt amplifier through R_{1} sufficient to neutralize that fed back through R_{2}. This drives the Schmitt amplifier output into its saturated positive state. The integrator output now ramps negatively until the ourput int its saturated is reached. Then the negative current through R, cancels the positive
second switching level is real
curent though R_{2} and the Schmitt output is restored to its original state, restarting the cycle.

Type IV is the two-amplifier astable corresponding to the single amplifier form of type II. In the last case the potential divider can be considered as setting the voltage gain to some fixed positive value while he CR network transfers any output step back to the input; via the noninverting gain the regenerative action forces any such step to saturate the output. The
conducting path to ground restores the non-inverting terminal towards zero as a decaying exponential. At a voltage again controlled by R_{2} / R_{1} and the saturation levels the amplifier enters its linear region briefly, only to be swept on to the other saturation level when the second and similar part of the cycle commences. For the two-ampinier form, the inverren the verall phase
then requires to be cascaded with an inverting amplifier of fixed gain to restore the overil relationship. The step voltage applied to the following input by the capacitor not only saturates the applifier in each case but may bring any protective input circuitry into conduction
modifing the time constants. In extreme cases damage might result if the amplifier input is no modifying the time constants. In extreme cases dan
capable of withstanding large differential voltages.

This last type cannot be directly related to the other two. It has overall d.c. negative feedback and cannot therefore latch into a permanently saturated state. The heavy local regenerativ feedback across the second ampifiter ensures that the system will oscillate as an astabie but
diuring the transitions between one quasistable state and the next high-frequency oscillation may be superimposed. This particular astable has received little or no oattention in its op. amp form though as will be seen later a similar form is known using logic gates. The importance o
the approach adopted here is that it allows new circuits to be derived from known versions, the approach adopted here is that it anows new circuits to the derivet from kership of a class
uinfamiliar circuits to be recognized and classified and for the complete member to be established. Each of these examples has severe frequency limitations because based on high gain low frequency amplifiers. A convenient alternative at high frequencies is to use
standard logic gates as the amplifiers.

THEORY

TYPE I. The output is assumed to switch between V_{A} and V_{B} where

$$
\begin{aligned}
& \text { upper threshold } V_{U}=\frac{V_{A} R_{1}}{R_{2}+R_{1}} \\
& \text { lower threshold } V_{\mathrm{L}}=\frac{V_{B} R_{1}}{R_{2}+R_{1}}
\end{aligned}
$$

Time for C to change from $\mathrm{V}_{\mathrm{t}} \rightarrow \mathrm{V}_{\mathrm{w}}$

$$
t_{2}-t_{1}=\tau \log _{e}\left[\frac{V_{A}-\frac{V_{B} R_{1}}{R_{1}+R_{2}}}{V_{A}-\frac{V_{A} R_{1}}{R_{1}+R_{2}}}\right]
$$

For a symm

$$
\begin{aligned}
\text { and } t_{2}-t_{1} & =\tau \log _{e}\left[\frac{1+\frac{R_{1}}{R_{1}+R_{2}}}{1-\frac{R_{1}}{R_{1}+R_{2}}}\right] \\
& =\log _{e}\left[\frac{R_{2}+2 R_{1}}{R_{2}}\right] \\
& =\pi \log _{e}\left[1+2 \frac{R_{1}}{R_{2}}\right]
\end{aligned}
$$

By symmetry the time taken for C to change from $\mathrm{V}_{\mathrm{U}} \rightarrow \mathrm{V}_{\mathrm{L}}$ must be

$$
T=2 \tau \log _{0}\left[1+2 \frac{R_{1}}{R_{2}}\right]
$$

TYPE II. Under the same assumption, the threshold voltages are the same if referred to the amplifier output instead of to ground i.e. the passive bridge is subjected to identical waveforms and hence
frequency. This is true provided the voltage steps transmitted to the non-inverting input via the capacitor do not drive the input or any associated protective network into conduction. A similar problem arises with type IV. With high Z in amplifiers a large resistor in series
with the non-inverting input protects without disturbing the frequency with the non-inverting input protects without disturbing the frequency.
TYPE III. This is the well-known square-triangle generator. Let the input and feedback resistors of the Schmitt trigger be R_{1}, R_{2} and fo simplicity assume that the salur thresholds are then $\pm R_{1}, V R_{2}$
For the transition between thes
change by $\pm 2 R_{1} V / R_{2}$ when the inpusholds the integrator output has to
Hence $\frac{\mathrm{V}}{\mathrm{R}}=1=\frac{\mathrm{dQ}}{\mathrm{dt}}=\frac{\mathrm{CdV}_{\mathrm{c}}}{\mathrm{dt}}=\frac{-\mathrm{CdV}_{0}}{\mathrm{dt}}$
where V_{0} is the output voltage of the integrator
$\therefore \frac{2 R_{1} V}{R_{2}}=\frac{t V}{R C}$

$$
\mathrm{t}=\frac{2 \mathrm{R}_{1} \tau}{\mathrm{R}_{2}} \text { for } \mathrm{r}=\mathrm{RC}
$$

The period of the waveform is $T=\frac{4 R_{1} \tau}{R_{2}} \quad f=1 / T=\frac{R_{2}}{4 R_{1} \tau}$
The triangular wave amplitude is equal to the separation between the upper and lower thresholds.

$$
V_{0}=v \frac{R_{1}}{R_{2}}
$$

and $\mathrm{V}_{0} \propto 1 / \mathrm{f}$ for τ constan

THEORY/EXAMPLES

TYPE IV. Assume the saturated output levels of the differentiator when overdriven are $\pm V$. For $R_{2}<R_{1}$ the corresponding inverter
outputs are $\pm R_{2} V / R_{1}$. This is the step size transferred to the differentiator inverting input with the transition initiated as the input passes through zero. Let the voltages across R at beginning and end of

$$
\text { Then } t_{2}-t_{1}=\tau \log _{e} \frac{V_{1}}{V_{2}}
$$

$$
=\tau \log _{e}\left[\frac{V\left(1+\frac{R_{1}}{R_{2}}\right)}{V}\right]
$$

$$
=\tau \log _{e}\left(1+R_{1} / R_{2}\right)
$$

Period of the waveform is $T=2 \tau \log _{0}\left(1+R_{1} / R_{2}\right)$
TYPE V. Frequency turns out to be identical to that for type IV. Inverter output is $\pm V R_{2} / R_{1}$ corresponding to $\pm V$ as the saturated output of the other amplifie

$$
\text { Hence } V_{1}=V+v \frac{R_{2}}{R_{1}^{\prime}} \quad V_{2}=v \frac{R_{2}}{R_{1}}
$$

$$
\frac{V_{1}}{V_{2}}=1+\frac{R_{1}}{R_{2}}
$$

1. An operational amplifier has output saturated voltages of +14 and
-12 V . It is used with $\mathrm{R}_{1} 22 \mathrm{k} \Omega, \mathrm{R}_{2} 47 \mathrm{k} \Omega$ in a type I astable with C $-12 V$. It is used with $R_{1} 22 \mathrm{k} \Omega, R_{2} 47 \mathrm{k} \Omega$ in a type I astable with C
$0.14 \mathrm{~F}, \mathrm{R} 100 \mathrm{k} \Omega$. Find the frequency of oscillation, the output mark-space ratio and the amplitude at the inverting input.

$$
\text { upper threshold } V_{U}=\frac{R_{1}}{R_{2}+R_{1}} V_{A}=\frac{14 \times 22}{(22+47)}
$$

$$
\text { lower threshold } V_{L}=\frac{R_{1}}{R_{1}+R_{2}} V_{B}=\frac{-12 \times 22}{(22+47)}
$$

$$
\text { Time from } \mathrm{V}_{\mathrm{L}} \text { to } \mathrm{V}_{\mathrm{U}}=\tau \log _{\mathrm{e}} \frac{17.8}{9.53}=0.625 \tau
$$

$$
\text { Similarly time from } \mathrm{V}_{\mathrm{U}} \text { to } \mathrm{V}_{\mathrm{L}}=\tau \log _{\mathrm{e}} \frac{16.5}{8.17}=0.702 \tau
$$

$$
\text { Mark-space ratio }=1.12 .
$$

Period $=1.327 \tau$

$$
\mathrm{f}=\frac{0.889}{}=\frac{0.889}{105}=88.9 \mathrm{~Hz}
$$

Peak-peak amplitude at inverting input $=\mathrm{V}_{\mathrm{u}}-\mathrm{v}_{\mathrm{L}}$

The frequency is
thresholds i.e. for

$$
\begin{aligned}
r & =2 \tau \log _{e}\left(1+2 \frac{R_{1}}{R_{2}}\right) \\
& =1.321 \tau
\end{aligned}
$$

What's so natural about e?

A 'maths-made-easy' investigation of a mysterious number

The author presents a study of Euler's number, the key to universal laws mathematics and brings out its value by various graphical methods. These inc
curve sketching for $d y / d x=y$; slope curve sketching for $\mathrm{dy} / \mathrm{dx}=\mathrm{y}$; slope finding the one of slope $=y$; building a series for e^{x} and hence e (for more accurate calculation) from small steps along the $y=e^{x}$ curve, and comparing
this with the compound interest law and a simple schieme for any pocket
a simpleulator; slope measurement on
$y=\log _{2} \times$ curves and finding the one of slope $=1 / x$ and finding x for unit, area under the rectangular hyper of logarithms will be discussed.

THAT mysterious number e, which rules so many of the laws of change in he universe, not only in the inanut also in the living world of plants and animals and in business, social and even political affairs, is obviously important to tech nical people. It is said (by mathemari' number, but the engineer's traditional mistrust of mathematicians seems to be immediately confirmed when he finds that e is $2.7182 \ldots .$. . Natural? Shouldn't we use that word only for like numbers between 1 and 10 (or perhaps up to 20 if we bring in our toes as well)? At any rate we can then look smugly at the SI system, whose quantBut hold on for a moment! Isn't there another 'natu: * number which we first met in our schooldays, that baffling symbol π ? At one time you had to be an earnest student of algebra before being educational progress that now, every day, all over the country, thousands of industrious infants are patiently rolling coins along pencilled lines or stripping string off tin cans to reveal that hidden almost magical quantity, practically worshipped by electrical engineers, $\sqrt{2}$! Wor course, e isn't as submissive, as eagerly ready to give up its secrets, as none of them can be expressed in simple none of them can be expressed in simple
nor even exact fractions. Just how were you first introduced to e? Did you
maths teacher excite your interest by referring to the FA Cup knockout, or kindle your imagination by talking of population explosions or the shape of a grand piano, a cluster of organ pipes or your innate cupidity by calculating the dire effects (on the borrower!) of making loans at compound interest, but Ill bet you 2.7182 to 1 that he simply fractions, made you work them out and add them up and then said triumphantly "that's e!"
"that's e!".
Now I must admit that the bald idea of a regular series of numbers stirs no motion in my breast, especially when that I felt no compulsion, like Archimedes emerging from his bath, to shout 'Eureka!'. No doubt I should be ashamed to find that those same indeare pressing on with series and have arranged themselves in arithmetica progression of age and geometrica progression of size or ability, thus get However I can console myself with th hought that I might have got interested in series if I had been shown the reall useful ones, such as those that enable you to calculate logarithms or sines (or even improve upon the work of the clever fellows who prepared those tablets known as log tables (like many graven images they have now fallen
thanks to pocket calculators). But that was not to be, and so, for the same reason that I gave up learning to play the piano because I wasn't allowed play any piece that I liked, I took dislike to series. I also became dise finding that a certain physics master traded on my ability to use them by devising a hysteresis experiment involving a tremendous number of diawith the Ts and colossal powers of 10 which were all the rage before SI system took over, which took hours to work out.
Both e and π are transcendental numbers, which sounds very trendy, bu earthly, extraordinary nature. As the Shorter Oxford English Dictionary informs us, such numbers cannot be 'pro-
duced by a finite number of ordinary algebraic operations of addition, multiplication, involution or their inverse operations' and can only be expressed
'in the form of an infinite series'. So there's no escape if you want a fairly accurate value! But at least the series for e can be built up on a commensense basis, as we will see later, instead. of let's try another approach, a graphical one, which might just appeal to practical people like engineers.

Natural growth and decay

There is a vast group of changing There is a vast group of changing within us whose numbers grow or decay quickly or slowly, but always in strict proportion to their values at any particular moment. I have already men-
tioned some of them and would like to include many more examples before the end of these articles. Mathematicians, in their usual succinct way, express all this in the bald statement

$$
\frac{d y}{d x}=k y
$$

so that y is the changing quantity and x the yardstick by which the change is auged. x may represent time or just series of numbers and k controls proportion. Now every engineer know graph where y is plotted against x, so et's see if we can build up the shape of the curve for our equation above. Jus to keep it simp

$$
\frac{d y}{d x}=y
$$

Then if $y=0$, the graph slope is zero; fo Then if $y=0$, the graph slope is zero; fo
$y=1$, the slope is 1 ; for $y=2$, the slope is 2 and so on. If we sketch out these slopes alongside a pair of equal-length axes for x and y and to the same scal (Fig.1) and then roughly piece (Fig.2) we get some idea of the upward sweeping curve that represents $d y / d x=y$. By going to the trouble of making a lot more slope measurements at very fine intervals, we
smooth curve as in Fig. 3 . mooth curve as in Fig. 3
Next we place the curve between the
waiting axes of x and y, but immediatel hit a snag. Just where do we put it? Is it ab c d or e in Fig.4? To our dismay we

matter. As long as we move the curve sideways there are any number of posifor any given value of y. Curve c might appear to be the favourite because the curve should go through the origin, but The curve in fact never drops to zero because it keeps on diminishing in slope as it moves to the left and never quite flattens out.
The pure mathematician is of course openly. "That's what comes of monkeying about with graph slopes," he says. "You should have stuck to series!" Bruised, but not yet defeated, we try his advice. If a quantity grows at a rate proportional to its own value, then surely it literally multiplies itself at regular intervals of time or reference number? Let's look then at a simple doubling each time:
$\begin{array}{ccccc}1 & 2 & 4 & 8 & 16\end{array}$ and for good measure we'll look back-
wards, too, halving the numbers: , having the numbers.

Examining the first set closely, you'll notice that the numbers are all multiples of 2 and can be set down, then, as powers of 2
$=2^{0} \begin{array}{lllll}2^{1} & 2^{2} & 2^{3} & 2^{4}\end{array}$
Similarly the second set are also powers of 2 , but negative

$$
\begin{array}{ccccc}
1 & 1 / 2 & 1 / 4 & 1 / 8 & \frac{1}{16} \\
=2^{0} & 2^{-1} & 2^{-2} & 2^{-3} & 2^{-4}
\end{array}
$$

You will see that the whole series can be
You will see that the whole series can be number, positive, negative or zero. Now that was for numbers which double or halve themselves. In the same way you can convince yourself that 3^{x}
would represent numbers that treble themselves or that 4^{x} corresponds to a fourfold increase each time. The x in all such numbers is called an exponent from the Latin ex=out of, ponere $=t$ placed out of its normal position to

Fig 2
Fig. 1. Slope increases with y for $d y / d x=y$.
$y=d y / d x$ f build-up of curve for om
Fig. 3. Smooth curve built up from large number of slope samples.

Fig. 4. Spot-the-curve for $y=d y / d x$.
show how many times a number is to be multiplied by itself ogether a list of some of hole-numberial numbers for various .
$2^{x} \cdot \frac{1}{16} \quad \frac{1}{8} \quad \frac{1}{4} \cdot \frac{1}{2} \quad 1 \quad 2 \cdot 4 \quad 8$
$\begin{array}{llllllllll}3^{x} & \frac{1}{81} & \frac{1}{27} & \frac{1}{9} & \frac{1}{3} & 1 & 3 & 9 & 27 & 81\end{array}$
$\begin{array}{llllllllll}4 \times \frac{1}{256} & \frac{1}{64} & \frac{1}{16} & \frac{1}{4} & 1 & 4 & 16 & 64 & 256\end{array}$
One thing we can see straightaway about these exponentials is that they $x=0$ (which will come as no surprise to anyone who knows his basic algebra since any number raised to the power of zero becomes 1 . If we now plot them in
the form $y=a^{x}$ where $a=1$. the form $y=a^{x}$ where $a=1,2,3,4$, we
get the exponential curves shown in get the exponential curves shown in
Fig.5. All these curves are of the same shape if sufficiently stretched or squashed in the x direction, a point mphasized by Sawyer in his 'lazy ongs model2. You can now test the
act they do grow at a rate proportiona to their values at all points, by the time-honoured engineer's method of setting his ruler at a tangent to the poin on the graph paper from this tangent line an ' x ' coordinate of a length easy to divide by, and finding the correspon ding 'y coordinate. A couple of sample or 2^{2} are shown on Fig. 5 . Now in our original statemen
$d y / d x=k y$, the constant of proportio nality
$k=\frac{d y / d x}{y}$
or $=\frac{\text { slope of curve at any poin }}{\text { value of } y \text { at }}$
so that for 2^{x} and $y=2$,
$k=\frac{1.4 / 1}{2}=\frac{1.4}{2}=0.7$
and for $y=5$,
$k=\frac{1.4 / 0.4}{5}=\frac{3.5}{5}=0.7$
so that the idea of k as a constant is borne out. In the same way you wil discover that $k=1.1$ for 3^{x} and 1.4 for 4^{x} Should you, like our pure mathe
matician, despise and distrust such purely graphical method, then have a go at a fairly simple calculation instead Let x increase by some tiny amoun rom a given value, say from 1 to 1.001 orrespondingly. Then for $y=2^{x}$
when x changes from 1 to 1.001
y changes from 2^{1} to $2^{1.001}$
That last figure looks a bit awkward and if you, like me, are too impecunious to enjoy the benefits of the lates microcomputer scientific pocket calc lator then it's back to dear old logs:

$$
\log 2=0.30103+
$$

$$
\times .001=0.00030
$$

$$
\log 2^{1.001}=0.30133
$$

Antilog $=2.0014$

Fig. 5. Which exponential curve has
slope always equal to its y value?
(Incidentally, if you twist my arm, I will reveal that you can use even the simplest pocket calculator to work out fig-
ures like $2^{1.001}$ from an endless (but steadily diminishing) series of numbers, assuming that you can find the natural logarithm of 2 or whatever. Should the idea turn you off, then just skip the rest of this bracket. The series is
$a^{x}=1+x \log _{e} a+$
$\frac{\left(x \log _{e} a\right)^{2}}{2 \times 1}+\frac{\left(x \log _{e} a\right)^{3}}{3 \times 2 \times 1}+$
and it is easily obtained from the series for e^{x} which we will discover later ${ }^{3}$ looking back at this section after we have discussed e^{x} and natural logarithms!
Then for $2^{1.001}, x \log _{e} a=1.001(0.69315)$ $=0.69384$
or $2^{1.001}=1+0.69384+0.24071+$ $0.05567+0.00966+0.00134+0.000155$ $=2.0014$ to four decimal place

Wasn't that hard going compared with our original calculation, using 'ordinary' logs? Still, it may satisfy the sticklers for accuracy
So then, using the symbol Δ to stand for a small but definite change, for $y=2^{x}$ and when $x=1, y=2, \Delta y=0.0014$ for $\Delta x=0.001$ and $\Delta y / \Delta x=1.4$. Then $\Delta y \prime$ $\Delta x / y=1.4 / 2=0.7$, which is the same curve by measuring its slope.
(The P.M. shudders and rolls his eyes heavenwards. "You cant say that Δy / Δx is the slope," he hisses. "You know damn well that it ought to be $d y / \mathrm{dx}$, and
k 's value, which is $\log _{2}$, should be 0.693 not 0.7 , at least to the sort of accuracy you fellows are prepared to put up
with." "So what?" I rudely reply, "it's with." "So what?" I rudely reply, "it's only the order of k that I 'm interested in,
and I can work out the value of e as accurately as I like when I'm good and ready. What's more, I can look up my tables of natural logs too and see that, for $3^{x}, k=\log _{3} 3=1.099$ and for 4^{x} is $\log _{e} 4=1.386$!" But that would be yet!) After all that let's discover what we an from Fig.5. All the curves have constant k factor, and if this is 0.7 for 2^{x} 1.1 for 3^{x} and 1.4 for 4^{x}, it stands to ween the first two for which $k=1$. What is its equation? If we call it $y=\mathrm{e}^{x}$, then it is crystal clear that e lies between 2 and 3, so we have made our first great dislimits is e? Now we might just recruit few teams of our infants, who, having measured and calculated everything within reach, are driving their teachers up their respective walls. We'd press
into each hot eager little hand a scientific calculator, with the instruction "Go and work out a lot of values for 2.001 up to 2.999^{x} at one thou spacings and

$\begin{array}{lllllll}-2 & 0 & 1 & 2 & 3 & 4 & 5\end{array}$
Fig. 7. Graphs of various exponential functions.
draw the graphs. Find out which one has a k of unity!" But despite the gratitude we would earn from the exhausted teachers, we as engineers would prefer to select one of our oldest and most cunning work saving methods - interpolation laboratory student means getting the most information out of the fewest (or less) possible results. Suppose we plot $y=a^{x}$ in Fig. 6. Then, from the curve when $k=1$, e comes out as around 2.7 ! (if you want to draw as nice a curve as possible, you can always cheat by looking up values for $k=\log _{e} a$, but it does rather spoil the thrill of discover Next you might wish to fit in the true e^{x} curve on Fig. 5 (which in fact I have already done for you with the queried value) and check that its slope is every-
where equal to y. This is the exponential function, when so described. Now at last we have located the unique function whose differential is equal to itself! Incidentally if $x=1, y=\mathrm{e}^{1}=\mathrm{e}$, so that the value of e is identified on the y scale Fig. 8 later.
So far we have dealt with natural or exponential growth. Exponential decay is evinced by similar curves; formed with negative exponents, of the general
type $y=a^{-x}$. Fig. 7 shows these for the same a values as in Fig.5, and over slightly wider x and y ranges. Note how the a^{-x} curves are the mirror images

WIRELESS WORLD, DECEMBER 1979 (about the y axis) of the corresponding a^{x} curves. We can expect the slopes,
then, to have the same numerical value for any given value of y but now to be negative instead of positive. The curve then, for which the differential or slop the negative of the y value at

The compound interest law

hope that you have now seen, from one viewpoint at any rate, that e is natural number. Having got a rough ut how to obtain a more accurate result, in fact as precisely as we might ever want. It's got to be a series, since nobody can defy the S.O.E.D., so let' up the series.
It could be profitable to look again a the $y=\mathrm{e}^{x}$ curve which we have disco cred, and examine how y gradually space under the curve into a large number n of vertical strips (Fig.8), the side lengths of which represent various values of y against the corresponding x values. If these strips are narrow en ugh we can consider the e^{x} curve to be
virtually a straight line of constant slope across the top of any strip (like a much finer version of the Fig. 2 buildup). Then if x_{n} stands for the x value a the outer edge of the nth strip (the corresponding y value being y_{n}, the
width of each strip is x_{n} / n. Taking a sample strip between x_{10} and x_{11} you will see from the corresponding increase in y value th a
$y_{10}=$ gradient at y_{10} (by definition)
$\approx \frac{y_{11}-y_{10}}{x_{n} / n}$
so that $y_{11}-y_{10} \approx y_{10} \frac{\left(x_{n}\right)}{(n)}$

$$
\text { or } y_{11} \approx y_{10} \quad\left(1+\frac{x_{n}}{n}\right)
$$

Any other consecutive pair of numbers 11 so that the very start of the curve

$$
y_{1} \approx y_{0}\left(1+\frac{x_{n}}{n}\right)
$$

but $y_{0}=1$ so that $y_{1} \approx\left(1+\frac{x_{n}}{n}\right)$
similarly $y_{2} \approx y_{1}\left(1+\frac{x_{n}}{n}\right)=\left(1+\frac{x_{n}}{n}\right)^{2}$

$$
\text { and } y_{3} \approx y_{2}\left(1+\frac{x_{n}}{n}\right)=\left(1+\frac{x_{n}}{n}\right)^{3}
$$

from which you will realize that
$y_{n} \approx y_{n-1}\left(1+\frac{x_{n}}{n}\right)=\left(1+\frac{x_{n}}{n}\right)^{n} \approx \mathrm{e}^{x}$
Now although this answer is only approximate it becomes exact if we allow n to become so large as to
approach infinity, and we can replace x_{n}

Fig. 8. Building a series for e^{x} from small steps along the $y=e^{x}$ curve
imply by x. then in the usual math matical language

$$
\mathrm{e}^{x}=\operatorname{Lim}_{n \rightarrow \infty}\left(1+\frac{x}{n}\right)^{n}
$$

As yet the formula can hardly be described as practical - can you divide number of times? Even if you restrict ourself to a dozen for n, the calculation is still both tedious and inaccurate What we need is to multiply out the exp mission into a number of terms Anybody who has done a bit of simple algebra can work out that
$(a+b)^{2}=a^{2}+2 a b+b^{2}$
or, more to the point, that
$\left(1+\frac{x}{n}\right)^{2}=1+\frac{2 x}{n}+\frac{x^{2}}{n^{2}}$
This is where the Binomial ('two termed) Theorem comes in handy, as it the way in which we multiply out the two added terms.
Then $\left(1+\frac{x}{n}\right)^{n}=1+n \frac{x}{n}+$
$\frac{n(n-1)(x)^{2}}{2.1(n)}+\frac{n(n-1)(n-2)(x)^{3}}{3.2 .1(n)}+\cdots$
(Note, by the way, how this confirms the $(1+x / n)^{2}$ result above, for $n=2$, in its first three terms, lopping off al further terms which each become zero.) n, we can rearrange the result as
$\left(1+\frac{x}{n}\right)^{n}=1+x+$
$\frac{n(n-1) x^{2}}{n^{2} 2!}+\frac{n(n-1)(n-2) x^{3}}{n^{3}}$
(3! $=3 \times 2 \times 1$, etc.)

As n approaches infinite value, all part of approach unity value,
i.e. $\frac{n^{2}}{n^{2}}, \frac{n^{3}}{n^{3}}$, etc. so that
$\mathrm{e}^{x}=\operatorname{Lim}_{n \rightarrow \infty}\left(1+\frac{x}{n}\right)^{n}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\frac{x^{4}}{4!}+$
Now we have got a calculation for e^{x} which is reasonable to handle and proreasonably few terms. Let's check it by putting $x=0$. Anything raised to the power of 0 is unity, including e^{0}, and sure enough it is, as all the x term
vanish. More important, though, if you put $x=1$, you will at last get the famous series

$$
\mathrm{e}=1+1+\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}+\frac{1}{5!}+\cdots \cdots
$$

(which is where I , at any rate, first came into the scene). It was introduced in 1731 by the brilliant and prolific Swiss ding to one writer, Euler had already used ' a ' for the general base of any system of logarithms, as we did in plotting $y=a^{x}$, and apparently took ' e ', as the next available vowel, for the natural
base ${ }^{4}$, which we will talk about later A more obvious suggestion for the origin of ' e ' is that it is taken from the first letter of 'exponential's (Euler also intraduced a record number of other dur$\pi, \mathrm{i}(=\sqrt{-1}), \mathrm{f}(x)$ for function of x, Σ for summation and the schoolboy favourites (?) of $\mathrm{a}, \mathrm{b}, \mathrm{c}$ for the three sides of a triangle and A, B, C for the opposite angles? ${ }^{7}$. He also related e, π and i by the we will meet again) $+1=0$, which Euler's number, and nowadays both the English ' e ' and the Greek ' ϵ ' (epsilon) are used for the same purpose. I wont spoil your fun in working out the value of e with your pocket calculato check his figuring I will reveal that the first eight terms are enough to confirm a practical working figure of has a memory capability, there is plenty of scribbling on paper to do in summing the series. What may not be so well known is an ingenious series that enables e to be calculated, without writing down anything at all, on an ordinary This is described by Jon M. Smith in his book Scientific Analysis on the Pocket Calculator ${ }^{9}$ (which everyone should have a look at). The author's stratagem is to use what he calls 'nested parenhumbler brethren) and dramatically reduce both the number of data entries and the time required to make it a power
$e \approx 1+1\left(1+\frac{1}{2}\left(1+\frac{1}{3}\left(1+\frac{1}{4}\left(1+\frac{1}{5}\left(1+\frac{1}{6}\right)\right)\right)\right)\right)$

Have a try at that one in the same way as for e. (you can extend the series as far as you like to get any accuracy you wish for, but you have of course decided the number of terms and thus pred your first quotient). You can then make up your own tables of natural (hyperbolic) logarithms or check those you may have, remembering that if you is the natural logarithm of that number. (Actually, the energetic Mr Smith quotes nested parenthetical forms for the direct calculation of these trig. functions, and gives much more advice on evaluating scientific furictons in general. All the incentives that I was looking for years ago!).
Later in his book, Mr Smith also describes two tricks for setting the value
of e on a calculator that doesn't have a button for it. One of them, due to Texas Instruments Corporation, is simply to divide 193 by $71=2.7183098$. As he points out, this is accurate only to the

Fig. 9. Increase of repayment by compound interest with frequency of interest additions.

Fig. 10 . Which is the easiest way of
calculating e ? calculating e ?
giving an answer of 2.718 (to 4 sig.figs). To calculate, you start at the right-hand side and work steadily to the left:
$1 \div 6+1 \div 5+1 \div 4+1 \div 3+1 \div 2+1+$
What could be simpler? The unity multiplier outside all the brackets is redunspecial case from the general series for e^{x}, which is what Mr Smith actually quotes:
$\mathrm{e}^{x} \approx 1+x\left(1+\frac{x}{2}\left(1+\frac{2 x}{6}\left(1+\frac{6 x}{24}(1+\right.\right.\right.$
$\left.\left.\left.\frac{24 x}{120}\left(1+\frac{120 x}{720}\right)\right)\right)\right)$
gs).
well memorize e itself to five places $(e=2.71828)$. He then describes an in-
genious method of his own which he genious method of his own which he; more easily remembered. He starts with a sequence of pairs of numbers:
$\begin{array}{llllll}00 & 11 & 33 & 55 & 77 & 99\end{array}$
(zero and all the odd numbers)
Then he cuts out the 11 and 77 pairs (a symmetrical operation). Next he inserts a decimal point after the first zero and a metrical operation) to give:
(0.0 3355) 9

This product has to be multiplied by another 9 to give the setting for e :
$e=(0.033559) 9 \times 9=2.718279$
and when rounded off to 6 sig.figs gives 2.71828. The relative error here is less
than 7.10^{-5} ! ! After all that, isn't it nice of some calculator manufacturers to actually print the value of e on the front of their instruments?
Another method of finding the series one, is from the calculation of compound interest, a fearful object lesson to those would-be borrowers who haven't read their consumer reports. A certain moneylender, having noticed a poten
tial sucker nervously pacing up and tial sucker nervously pacing up and he wants to borrow $£ 1,000$ 'only for a year' and offers him a choice from the following tariffs:
(a) 100% interest, added at the end of the year,
t, added two times
(b) 50% interest,
(c) $331 / 3 \%$ interest, added three times
during the year,
(d) 25% interest, added four times
(e) 1% interest, added 100 times during the year.

The mug (which he certainly is) thinks these are all much the same, but likes the look of the 1% interest and plumps was by calculating the different costs:

So the grand total which our longsuffering debtor has to pay is very might have been only twice. Obviously the smaller the rate of interest $(1 / n)$, and the more frequently it is charged
(n), the nearer the debt multiplies to exactly e, as can be clearly seen in Fig. 9 (the steadily-moving tortoise in Aesop's.
fable obviously knew what he was fable obviously knew what he was
about when he dared to compete with about when he dared to compete with
the erratic whizz-kid hare). All the calthe erratic whizz-kid hates abales of a debt
culations above are examplen multiplication of $(1+1 / n)^{n}$, which evidently approaches e as n approaches
infinity. It should do so, if we look back infinity. It should do so, if we look back
to our original formula for to our original formula fo

$$
\mathrm{e}^{x}=\operatorname{Lim}_{n \rightarrow \infty}\left(1+\frac{x}{n}\right)^{n}
$$

because, if we substitute $x=1, \mathrm{e}^{x}=\mathrm{e}$, or

$$
e=\operatorname{Lim}_{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}
$$

On expansion, this leads to the same series again for e which we have already found. Small wonder, then, that Lord Kelvin, that eminent engineer and
mathematician, pioneer of electrical and other scientific measurements and of refrigeration, absolute temperature, metric units and much else, described the exponential growth relation, in which he had good reason to be interInterest Law.
Having shown the way in which $(1+1 / n)^{n}$ approaches e in Fig. 9 , this could be a good moment to take stock of the build-up in general and show how
the rate of approach varies between the different ways we now have for calculating e. If we plot the sum of the terms against the number (n) of terms taken (Fig.10) for $(1+1 / n)^{n}$ and for the two series
$1+1+1 / 2+1 / 6+1 / 2+\ldots .$. and
$1+1+1 / 2(1+1 / 3(1+1 / 4(\ldots))) . .$.
we can immediately see that the series, although starting at a lower value, converge on e much faster than the multi-
plied terms as n increases, which doubly justifies using them (easier to calculate and fewerterms requed. You note
$\begin{array}{ll}\text { (a) Total } & =£ 1000+£ 1000=£ 2000 \\ \text { (b) After 1st } 1 / 2 \text { year, debt } & =£ 1000+£ 500=£ 1500\end{array}$
After 2nd $1 / 2$ year, debt. $=£ 1500+£ 750=£ 2250(=£ 1000(1+1 / 2)(1+1 / 2))$
(c) After $1 \mathrm{st} 1 / 3$ year, debt After 2nd $1 / 3$ year, debt After 3rd $1 / 3$ year, debt
(d) After $1 \mathrm{st}^{1 / 4}$ year, debt After 2 nd $1 / 4$ year, debt
After $3 \mathrm{rd}^{1 / 4}$ year, debt After 3 rd
After 4 th $1 / 4$ year, year, debt

After 100 th $1 / 100$ yr, debt
$\begin{aligned} \text { After 3rd } 1 / 4 \text { year, debt } & =£ 1563+£ 390=£ 1953 \\ \text { After 4th } 1 / 4 \text { year, debt } & =£ 1953+\quad £ 48=£ 2441\left(=£ 1000\left(1++^{1 / 4)}(1+1 / 4)(1+1 / 4)\right.\right. \\ \text { After 1st } 1 / 100 \text { yr, debt } & \left.=£ 1000+\quad £ 1=£ 1001 \quad\left(1+1_{4}\right)\right)\end{aligned}$
$=£ 1000+£ 333=£ 1333$
$=£ 1333+£ 444=£ 1777$
$=£ 1777+£ 593=£ 2370(=£ 1000(1+1 / 3)(1+1 / 3)(1+1 / 3))$
$\begin{aligned} & =£ 1000+£ 250=£ 1250 \\ & £ 1250+£ 313=£ 1563\end{aligned}$
$\begin{array}{lll}=£ 1000+ & £ 1=£ 1001 & (1+1 / 4)) \\ \approx £ 1001+ & £ 1=£ 1002 & \end{array}$
$\underset{\sim}{\approx} \underset{\sim}{\approx} 10002+$
¢ $=$ £1003
$=£ 2704\left(=£ 1000(1.01)^{100}\right)$

References

1. F. Land: The Language of Mathematics, Ch.9, pp.117-146 (Logs, pianos and spirals). John Murray 1960.
2. W. W. Sawyer: Mathematician's Delight,
p.211. Penguin 1943.
p.21. Wenguin 1943 .
3. W. . Rose: Mathematics for Engineers,
Pt.1, 8th Edn. p. 470 .

Pt.1, 8th Edn. p. 470 . Chapman \& Hall 1930
(and other testbooks).
4. W. .W. Rousse Smith: A Short Account of
the History of Mathematics, 4th Edn. p. 394 . the History of Mathematics, 4th Edn. p. 394.
19088 republished Dover 1960.
5 C. B. Boyer: A History of Mathematics, 5. C. B. Boyer: A History of Mathematics,
Ch. XI, pp.481-509 (The Age of Euler). John
Wiley ChXXI, pp. 48
6. H. Eves: An Introduction to the History of Mathematics, 2nd Edn.
Rinehart \& Winston 1964 .
Rinehart \& Winston 1964.
7. New Encyclopaedia Brittannica, 15th Edn.
Micropaedia Micropaedia, Vol.6, p.1027. 1974.
8. Encyclopaedia Brittannica, Vol.8, p.819, 8. Encyclopaedia Britta.
(Euler, Leonhard), , 969 .
9. J. M. Smith. Scientic Analysis on the
Pocket Calculator, p.33. John Wiley 1975 .

Conferences and exhibitions.

Electronics '79, the Electronic Components
Industry Fair, is to be held at Olympia Industry Fair, is to be held at Olympia,
London, from November 20 to 23 , 1979. See page 51 for more details.
Switchex '79, the second conference and exhibition to be arranged by ERA Ltd's Wembley Conference Centre, London, from December 5 to 7 , 1979. The conference will
have five sessions, each concentrating on a particular aspect of switching technology,
and will cover devices, applications, and will cover devices, applications,
materials and components.

Automatic Testing '79, an exhibition and conference covering all aspects of automatic esting in the electronic and elec-
tromechanical fields, is to be held at the Metropole, Brighton, England, from De-
cember 11 to 13, 1979. , Microsystems ' 80 conference and exhibition
will be hell at the Wembley Conference
Centre London from January 30 to February Centre, London, from January 30 to February
1, 1980. The conference format has been 1, 1980. The conference format has b
improved upon that of previous events.
IEA-Electrex ' 80 , the international instruments, electronics and automation exhibi-
tion, will be held at the National Exhibition Centre, Birmingham, England, from February 25 to 29, 1980. Iphex ${ }^{\prime} 80$ (International
Pneumatics and Hydraulics Exhibition inPneumatics and Hydraulics Exhibition in-
corporating Compressors and Power Transcorporating Compressors and Power Trans-
mission Equipment) will be staged simult-
aneously and one registration will aneously and one registration will obtain
admission to both events.

WIRELESS WORLD, DECEMBER 1979
73

modified headphones the source does appear simple cross-field connection between the channels moves the source forwards (eve hough there is no front/back information caused by components present only in on channel, and even makes ambient noises (e.g reverberations, or sounds from an audience head. In addition, once can sit anywhere on's living room, without worrying about
either its acoustic properties or the neigheither it
bours.
Som
bours. $\begin{aligned} & \text { Some years ago I purchased a pair of } \\ & \text { inexpensive headphones (Toshiba } \mathrm{HR} \text { - } 50 \text {) }\end{aligned}$ which happened to be fitted with a cross-fiel comfortable ear-pieces. They proved to more satisfying to listen to than any louc peaker system (or any other headphones) why the value of these two particular fea tures is apparently not widely appreciated or publicised by manufacturers. Could the reason be that money to be made out of expensive loud speakers and high-quality power amplifiers? speakers
P. . Soul
Earley
Earley
Berks
The author replies
Mr Soulhor has ries: raised the question of the ability of the brain to form a sound image in he absence of certain cues (unspecified). The sensory information from which to build up a picture of its acoustic surroundings: I hope have not given the impression that it cannot
do so unless it is given a full set of all possible do so unless it is given a full set of all possible cues. This was not my intention and agrerver continually makes jud He also takes issue with me on the subject He also takes issue with me on the subject
of headphone listening. We are, fortunately, still a free country and if anyone cares to isten to stereo programmes on headphones
he can enjoy the advantages Mr Soul mentions, of acoustic isolation and freedom to sit anywhere in his living room. But the fact is that stereo transmissions generally are
tailored to the use of loudspeakers (pace dummy head" arrangements) and I think one can presume that most listeners are joined umbilically to their reproducing equipments. If the "crossfield" connection means what I think it does it presents the headphones listener's ears wit
approximately the same signals as they would normally get from a pair of loud

AUDITORY CUES IN
STEREOPHONY
1 was fascinated by Philip Vanderlyn's article Auditory cues in stereophony" (September
1979 issue), not least because of his description of the almost insuperable obstacles systems. This being so, I was puzzzed as to why he omitted a couple of practical points.
the ability of the brain to construct a sound image when certain cues are missing, and the
use of headphones in overcoming nearly all use of headphones in overcoming nearly al the problems that lousspeaker sysems
Mr Vanderlyn dismissed headphones as being unnatural and unaesthetic, yet they are
not necessarily so. Agreed, the head cannot move in relation to the source - but how tening to loudspeakers? Agreed, with un
otten a cover for shallowness and lack of
culture. The main explanation for a lack of balance in much that passes for modern
'advanced' study is that the lecturers themselves do not kn
specialised noses.
Much of the other work of Oliver Lodge is
of great interest. It is foresaw the vital use of tuning or resonance systems of tuning, calling the mechanism 'syntony'. It is less well known that his
interest in resonance led him to experiment with Leyden jars discharged through such a oscillatory discharge resulted in the emission
of a musical note - in other words, the frequency of oscillation was lowered into the audio band
Kelvin had derived the differential equation for the discharge of a capacitor through a
resistive self-inductor and had shown all the types of oscillation that would be produced.
This was published in Philosophical Magazine, 4, 5, p. $.393,1853$. And this was only
ten years after Joseph Henry had noted that ten years
the discharge of Leyden jars appeared to be,
ward..." This no the realy
This note of the remarkably early under-
standing of tuning and resonance, although not directly relevant to Dr Smith's micro-
waves article, nevertheless does show how versatile some of the early workers were, and
shows that Lodge especially probably quite deliberately set up tuned cavities of the type
shown in the diagram re article.
R. T. Marchant
Leyton
London E10
oos anything towards getting the sound mages "outside the head". Nevetheless input is subjective, and observers diffe widely in the way they describe their ex
If find Mr Soul's comment on the economic of loudspeakers versus headphones unrealis tic. Surely it costs every bit as much to quality headsets and something to drive hem as to give them a conventiona mplifier and pair of loudpeaker
Philip Vanderlyn

ACOUSTIC BREAK-
THROUGH IN RECORD PLAYERS
y friends Poul Ladegaard, Martin Colloms r their work rntable isolation characteristics We ternational Audio Review have been experimenting in this area for some time (see discussion in $I A R 1 / 2$), but with impluse severation insteasons, one of which is siven below) Im not happy with the calibration of our strumentation yet, so we have qualitative, generalized comparisons so far in our lab; 1
hope a computer will soon change this situaion, and we'll then have some quantitative evaluations to offer.
Meanwhile, there
Meanwhile, there are some points I'd like
suggest regarding Mr Moir's article o suggest regarding Mr Moir's article in
Wireless World (May-June 1979). First, I'm not sympathetic to the popular choice of the word "breakthrough". The term "acoustic deleterious effects until some unwanted phenomenon breaks through some barrier be the 0 dB reference level of the acoustic feedback loop, which the feedback breaks hrough at some frequency, thus causing points out, the deleterious sonic effects begin many dB below this level.
Furthermore, these effects both commence
and increase gradually, both as a function of tighter feedback coupling and as a function of the temporal passage of a music signal Which continually changes in both suddenly break through in any of these four senses, with some quantum jump - only full
fledged oscillation does that (at higher level). igher level).
So far, I'm
shioned term ined to think that the old able to "acoustic breakthrough". If an word needs alteration, it is "acoustic". Some the feedback travels a path that entirely waves than viacompression vaves; the study of this mechanical coupling belongs more to structural mechanics than to acoustics. And note that virtually none of the feedback travels only through the air via compression
waves, from loudspeaker directly to stylus. Second, I suspect the deleterious effects of feedback. coupling might in fact be audible
far below the -15dB level Mr Moir heard in ar below the - $15 d \mathrm{Clevel}$ Mr Moir heard in
his basically well conceived aural experiment (part 2 of article). Let us assume that foreign signals, such as disc surface noise and ticks.
can easily be heard on either side of a musical peak even if that foreign signal is 50 dB down

s,

| WiRELESS worLo. DecEMBER 1979 |
| :--- | :--- | :--- |
| |

software very carefully in order to ensure
hat no unwanted changes will be made. In practice it would be just as quick to alter the program one item at a time using ALT.
7. Both the monitor and BURP are very particular about the format of entries, in
particular the placing of "spaces". A v.d.u particular the placing of "spaces". A v.d.u.
cursor would be helpful, since without it one can often be uncertain as to whether or not a space has.been typed after the last character
although it would probably be less frustrating if there was a little more flexibility of input data.
8. From my personal point of view, the greatest limitations of the firmware relate to the BASIC facilities available. In order to be appropriate for complex scientific purposes
a a more sophisticated version of BASIC would
be highly desirable. BURP is very limited in be highly desirable. BURP is very limited in
terms of number of program lines, number and format of variables and flexibility o statements. To keep the situation in per-
spective, it must be realised that the use of spective, it must be realised that the use of
the MM57109 has enabled a 2K BASIC interpreter to be written which would put any Z80
2K BASIC to shame. I am merely suggesting that the addition of an extra 1 K or 2 K of interpreter could result in a BASIC far mor powerful than many 8 K versions available. 9. Finally, I am sure that Mr Adams would be
the first to agree that prospective constructhe first to agree that prospective construc
tors must realise that his design is specifically orientated towards scientific usage. A person
whose main interests were in games, busiwhose main interests were in games, busi-
ness use or control applications would be far better advised to look to one of the man straightforward $Z 80$ designs available.
Having been critical, may I finish on Constructive note. I am at present engaged in writing a somewhat extended interpreter for his design, in order to overcome some of the this comes up to expectations I hope to b able to make it available to constructors this design in the foreseeable future.
John R. Whittington
North Harrow

WHAT'S WRONG
WITH TELETEXT
The attitude taken by BREMA towards the he lack of initiative that contributes to the present malaise of the UK radio and televi Ion industry (news, July issue, p. 61). for ignoring teletext without really lookin into the reasons why the service has never captured the interest of the so-called 'man in rance. I mean that not in a derogatory sense, but simply that where technical innovations in the electronics field are concerned few people outside the
what is happening.
It was clearly shown last year when the radio wavelength changes took place that service was, or that it even existed. This was after the service had been in existence for over 20 years. It is also a fact that "stereo" is a mean almost anything that plays gramophone records whilst a "cassette" is a system which plays tapes, either stereo o expecting the public to accept that their
television sets can be made to produce pages
and see in colour It is beyond select at will comprehension of most people, who probably think it is something from "Star Wars".
The UK broadcasting organisations were the firist in the world to initiate this service,
on a limited budget Here was an opportunity on a limited budget. Here was an opportunity
for BREMA to lead the world, but what happened? Virtually nothing; the publicity behind the teletext sets was almost non-
existent. It was left to an American company existent. It was left to an American company
to provide the electronics for the decoder circuits.
The second generation of decoders is larcompany and yet BREMA, which held almost all the cards in the beginning, is now complaining that nobody was sow, and
uses the Almost every home in Britain has the apparatus for demonstrating teletext, so why don't the BBC and IBA show teletext create interest*. A few sample pages of sports information shown during Grand-
stand would be great publicity From the stand would be great publicity. From the
manufacturers' point of view perhaps they mane asking too much to expect people to buy new sets when only a short while ago they teletext conversion unit that plugs into. the aerial socket may have some technical hang-ups but it might be a more interesting than go to the expense of a new one. A design of set could be produced whereby a teletext module can be plugged in at some future date the financial outlay.
The potential is still there and so are the customers, so now is the time for the broad-
casting organisations and the to get together and discuss how, for their mutual berefit, they can expand and promote the service. Just give someone a
teletext set to play with and you will find that he will soon realise its potential. Now about Prestel Mike Hutchin
King's Lynn King's Lynn
Norfolk
*They have done occasionally. - Ed

CITIZENS' BAND FOR THE INFIRM ONLY?
INFIRM ONLY?
Much has been said for and against c.b. radio Much has been said for and against c.b. radio,
in the UK, for a long time now. I Ihave studied the question and find more facts in favour than against. As a paid up member of the RSGB, may I say I am not one of the shortsighted members that can't see the vast good
that c.b. radio could do in the UK, but it must be in the hands of those who really do need it, i.e. the m and disabled only

Many of these people cannot take the
Radio Amateurs Examination, for many reasons, and some, given a test paper to do, would just break down. I go along with J.
Berry of Bristol (June letters) when he says bhat far too many of the radio amateurs in the RSGB are feeling far too high and mighty just because they have a licence. Many amateurs
look dion look down on the S.W.L. or on those that
can't for some reason pass the examination. As for pirates, there are many in clubs under the umbrella of the RSGB, I'm sorry to say. Alf Brimming
Lawrence Weston
Lawrenct
Bristol

VICTORIAN
MICROWAVES
The article "Victorian microwaves" in the
September issue illustrates a point I am repeatedly making to our more youthful engineers and which is very aptly covered in the second paragraph of the article.
In my case I have frequently used as an illustration of the point that "there is nothing new under the sun" an incident which I
experienced as a lecturer at RAF Radar experienced as a
School, Yatesbury, during the War (at a time when microwaves were regarded as the new magic). On one occasion I idly picked up a
book in the instructors' common room in oook in the instructors' common room in
which was reported demonstrations of Hertzian waves showing their analogous behaviour with visible radiation. The demonstra-
tions were such that the Hertzian waves had to be in the very short wave region - e.g. microwaves.
The book
The book turned out to be a record of one of the annual children's Christmas lectures
given by the Royal Society in 1894 and given by the Royal Society in 1894 and being "invented" just before the last war! being "inn
L. Taylor
Dartford
Dartyord
Kent

CONSULTATION FOR

 SPECTRUM USEI refer to the very interesting letter by Mr Bob the activities of the Canadian Radio Techthe activities of the
nical Planning Board.
In Australia, commercial television and pate in discussions leading to the preparapate in discussions leading to the prepara-
tion of the Australian brief for WARC 79 and the Federation of Australian Commercial
Television Stations (FACTS) has been an active participant. Our representation on the Australian preparatory group and its sub-
committees handling matters of concern to committees handling matters of concern to
he television industry has been through the television industry has been through members of the FACTS engineering comNational Association of Broadcasters in the United States as a secretariat maintained by
commercial television stations to further the interests of members in areas of concern to the industry as a whole.
Whilst we seem to hav
in our representations concerning the preparation of the Australian draft for WARC 79 , we have on the other hand been endea-
vouring, without much success, to foster the vouring, without much success, to foster the
creation of an industry consultative commitcee which would be "the working interface representing all users of the radio spectrum
and suppliers of radio equipment" in exactly ath suppiners of raieved with the Canadian the manner achieved with the
It would therefore be most helpful to us if
Mr Eldridge could supply further information concerning the guidelines/constitution/or terms of reference under which the Canadian Radio Technical Planning Board operates.
This would be most useful in furthering our efforts to set up what we have called the
The meter Broadcasting Industry Consultative Com-
mittee as an interface between users and the government departments, as regulating authorities in the radio and television field. Murray Stevenson
Secretary, FACTS Engineering Committee Sydney
Australia

Two-metre s.s.b. and f.m. transceiver-3

Transmitter amplifier, control circuits and constructional details

by G. R. B. Thornley, G2DAF

SO FAR THIS article has described the generation units for s.s.b. and f.m., the squelch unit, and the converters for the transmitter and receiver sections of the
two-metre transceiver. This third part two-metre transceiver. This third part
completes the design with the transmitter power amplifier, s.s.b. filter switching circuit and the control circuits. The author's constructional details are also given

Transmitter power amplifier
Figure 11 shows the circuit of the output power amplifier. This is constructed on a copper clad board measuring $7 \times$
4in with all components hard wired and 4 in with all components hard wired, and components supported on $1,000 \mathrm{pF}$ soldered-in feed-through capacitors. Because of the s.s.b. requirement, all stages must operate in a linear manner
in Class $A B$, and the necessary forward bias for each transistor is supplied by the base "bleed" chains $\mathrm{R}_{226}, \mathrm{R}_{227}, \mathrm{R}_{228}$ $\mathrm{R}_{229}, \mathrm{R}_{231}$ and R_{233}. Additional thermal stabilization of the base voltages of Tr_{58}

and Tr_{59} is provided by the clamp diodes D_{33} and D_{34}.
Any semiconductor r.f. power amplifier operating in a linear manner is much more prone to instabiry Than an ticularly applies where there is a high power gain. Instability may occur for a number of reasons. Parasitic oscillations may appear near the signal may arise due to the varactor action of the collector-base or emitter-base diodes of the transistor. Both of these osciliations generally occur at frequencould also be caused by external or internal feedback. As an additional precaution to ensure the maximum stability of the amplifier, all sensitive points are triple-by-passed to v.h.f., h.f.
and audio frequencies. The extra cost of these components is of small importance, compared with the replacement cost due to premature failure of an r.f.
from Tr_{59} of approximately 12 W p.e.p. However, if a higher voltage power
supply is available this will give a supply is available this will give a greater power output, together with
improved linearity. Advantage can be taken of the Motorola 2N5641 and 2 N 5642 ratings of $\mathrm{V}_{\text {CEO }} 35 \mathrm{~V}$ and $\mathrm{V}_{\text {CB }}$ 65 V . These transistors will give reliable service for s.s.b. and f.m. modulation with a collector supply of 28 V , and
under these conditions the 2 N 5642 is rated at 20 W power output. In practice the limit of power output is determined by the temperature rise of Tr_{58} and Tr_{59} and this in turn is effected by the efficiency of the heat sinking relies on the $73 / 8 \times 43 / 4 \times 2$ in aluminium die-cast screening box for heat sinking and this has proved to be effective, with a collector supply of 20 V , during con-
tinued operation over an 18 month period. However, for continuous opera-

Fig. 11. Circuit diagram for the transmitter power amplifier. Nomina values $R_{22 i} \cdot R_{229}$ and R_{232} may requir adjustment.

tion with a 28 V supply the heat sinking would have to be improved.
The wired links between the feedthrough capacitors $\mathrm{C}_{228}, \mathrm{C}_{289}, \mathrm{C}_{303}$ and
C_{314} are removed to allow a milliamC_{314} are removed to allow a milliammeter to be connected in circuit. It is
necessary to be able to measure the collector current of each stage separately, while adjusting the final ${ }^{\text {value of }} \mathrm{R}_{227}, \mathrm{R}_{229}$ and R_{232} to obtain the specified zero signal collector current for each transistor.
${ }_{\text {spaced pre-set capacitors and due to the }}$ low Q of the resonant circuit will hold setting across the required 144 to 146 MHz band. However the output
circuits are effected by the impedance and reactance of the aerial load, and to allow necessary adjustment C_{310} "power amplifier" and C ${ }^{3 i 2}$ "loading" are air spaced variable capacitors brought out to panel operated control knobs. tool to momentarily short circuit the pre-set capacitors associated with the collector circuits. This would be disastrous to the following transistors, and as C_{292} and C_{392} are included in the circuit.

S.s.b. filter switching

Figure 12 is a simplified circuit diagram showing the method of filter switching.
The transmit-receive function of the s.s.b. generator unit (Fig. 2) is controlled by switching the +12 V supply to the appropriate audio and i.f. stages. On receive, the 12 V supply through L_{6} and D_{15} to conduct and pruvide a low impedance path for the incoming 10.7 MHz signal from the receive con-non-conducting state offer a high impedance barrier to the transmit units. On transmit the 12 V supply through L_{1} and L_{10} causes the switching diodes D_{1} and D_{14} to conduct, and provide a
low impedance path for the outgoing low impeance path for the outgoing
10.7 MHz signal from the transmitter i.f. section. Diodes D_{10} and D_{15} in a nonconducting state offer a high impedance barrier to the receive units.
Capacitors C_{44} and C_{45} isolate the while R_{30} and R_{31} provide the manufacturers specified input and output resistive load. R_{3} and R_{32} provide a d.c. path for the diode forward current flow

The control circuits

Figure 13 shows the circuit connections to the control relays. Both relays have energising coils suitable for a 12 V sup-
ply and are controlled by a single pole ply and are controlled by a single pole
press-to-talk switch - in the authors press-to-talk switch - in the authors
case a bell-push screwed to a wood base $8 \times 4 \times 1 / 2$ in and operated by foot pressure. The two-pole change-over relay switches the 12 V power supply to

either the receiver or transmitter unit The four-pole change-over relay con the transceiver coaxial AE input sock to either the receiver converter unit, or the transmitter power amplifier and converter unit. To reduce the contact ying capability, poles 9 and 15 and the associated contacts are wired in parael. Pole 6 and contact 7 short circuit th receive converter input when the relay

Fig. 13. Control relay and termina block connections.
is in the transmit position. This is worthwhile precaution to protect the m.o.s.f.e.t. r.f. amplifier from stray in All ne. Ather than the external connection eight-way terminal block mounted on he chassis rear apron, as shown.

Fig. 15. Power amplifier layout, showing double-sided copper clad $7 \% \times 4^{3 / 4}$ in die-cast screening box. All components not shown are wired on the underside of the board. C_{310} and C_{312} are supported by an alu

Construction

All units are constructed on doublesided epoxy-glass copper clad board and with the exception of the r.f. power amplifier all compone
It is necessary to fully phase-lock unit to fully screen the unit, transmit power amplifier and the unit, transmit power amplifier and the units need only to be mounted on $3 / 8 \mathrm{in}$ high 6BA stand-off pillars. While the transceiver will operate from a 12 V marily for main station use so no attempt was made at miniaturization The overall size of the cabinet is largely a matter for individual choice but in practice it will be determined partly by
he tuning dial to be used. In the author case the cabinet was made larger than is future 70 cm Band transmit and receive converter units.
The complete transceiver, which neasures $15^{3 / 4} \times 711 / 4 \times 11$ in deep, ha 0 s.w.g aluminium. These are connected by four horizontal bars of $1 / 2$ in square section aluminium $103 /$ in long with the ends drilled and tapped 2BA The panels are fixed to the bars by plated machine screws. The L-section support rails of $3 / 83 / 8 \mathrm{in}$ by 16 s.w.g. aluminium 15^{3} in in long are bolted to the front and back panel so as to support platform $153 / 4 \times 103 / 3$ in of $14 \mathrm{~s} . \mathrm{w} . \mathrm{g}$. The platform is further stiffened by two L-section edges with 6BA machin screws and nuts. To form a complete cabinet, top, bottom and side panels of 16 s.w.g. aluminium are fitted to the square section bars.
It was considered of importance to have all units, wherever possible accessible for whage

4 Fig. 14. V.f.o. layout showing the e-cast box bolted to the side of the worm-drive gearbox and supportin $\mathrm{C}_{225} \mathrm{~L}_{33} \mathrm{C}_{219} \mathrm{C}_{220}$ and the low pass filter components are in the 18 s.w.g. box underneath. The hole above C_{220} is clearance for a trimming tool.

Threequarter view of the transceiv howing the chassis assembly
dingly, "layer" or "side-by-side" layou has been avoided. The s.s.b. generato p.c.b. and transmit power amplifier in it the rear panel. All other units ar mounted horizontally, with the transmit converter in its screening box and the v.f.o. unit on top of the platform The phase-lock loop in its screenin p.c.b., f.m. generator p.c.b., receive con verter p.c.b. and the two change-ove relays are mounted under the platform The general method of assembly ca clearly be seen from the photographs.
With all double-sided p.cbs., the to side of the board is used as a ground plane, the underside being etched to form the circuit interconnections. Desoldering and removal of faulty comcertain pin connections are through the board, and other connections ar directly to the ground plane, so all tw pin components - such as resistors an capacitors - have the chassis ear copper foil ground plane. With multipin components all connecting pins go hrough the board, and where necessary into an etched earthing lug in the bot om copper foil. This is electrically co. tinned copper-wire link.
All component mounting holes mus ave the copper of the top ground plan emoved by lightly countersinking th hole with a 4BA twist drill. This is bes he unused pins of IC_{3} and IC_{4} becaus these will be internally connected and "live".
For the power amplifier, where nor nal point-to-point wiring is adopted, nd both sides are used as chassis eart nected to the underside copper plate by soldering 24 s.w.g. tinned copper-wire U links, spaced app

The performance of the v.f.o. is de-
pendent not only on the electrical pendent not only on the electrical
stability but also on the mechanical stability of the unit. A recommended method of supporting the tuning capacitor C_{222} is to use a $3^{1 / 4} \times 3^{1 / 4} \times 2$ in
by 10 s.w.g. rigid die-cast aluminium by 10 s.w.g. rigid die-cast aluminium
box, with the end bolted directly to the reduction drive gear assembly. A second box of 18 s.w.g. aluminium or tinned steel plate $51 / 4 \times 31 / 2 \times 1^{11 / \text { in can }}$ be bolted to the die-cast box with the
two bottoms adjacent. The variable tuning capacitor should be the two bearing type and this can be supported in the top box. The remaining components $\mathrm{L}_{32}, \mathrm{C}_{219}, \mathrm{C}_{220}$ and the p.c.b.,
together with the low-pass filter in together with the low-pass filter in a
screened-off section, can be supported in the bottom box. A suitable layout, as used by the author, is shown in Fig. 14. For good v.f.o. stability it is most important that the coil L_{3} can be ad-
justed initially to the precise inductance justed initially to the precise inductance
value required and that it will hold its setting over a long period of time. The dust core should be held in position by a screwed brass rod, running through the mounting bush of the coil former, and capable of being locked in position by
either a spring-loaded clutch, or alternatively a locking nut, so that there is neither end or side float of the core within the winding. The former used by the Author is a baked paper type $21 / 8 \mathrm{in}$
long by $5 / 8 i n$ diameter. (As used in the coil pack of the surplus Marconi CR100 receiver). Winding should be put on under tension, and then thoroughly doped with coil cement (polystyrene rod
dissolved in Benzene) dissolved in Benzene).
vided by C_{299}. This is a tubular ceramic with a specification of N 750 M (negative 750 parts per million) supported by the coil connecting tags, and positioned so
that its length is pressing against the that its length is pressing against the
winding. Although a nominal value of 27 pF has been specified, in practice the actual value needed for full compensation will have to be determined by experiment.

Power amplifier unit and drive shafts to the panel tuning and loading controls

Section drowing showing ossembly detail

A - Topped 6 BA
B. 24 drill diameter ($\left(64^{*}\right.$)
fier Fig. 16. The power amplifier heat-sink
spacers. If $T r_{27}$ and $T r_{2,2}$ have 4 BA ${ }^{\text {spacts. }}$ a size 25 drill is recommended.
One advantage of a Colpitts paralleltuned v.f.o. is that a tuning capacitor with semi-circular rotor plates will give a roughly linear dial calibration. The actual departure from linearity is a small progressive reduction of angular rotation per ion higher in frequency In the authors transceiver the linearity has been improved so that the dial calibration is correct within $\pm 1 \mathrm{kHz}$ right across the tuning range, by slightly re-shaping the The calibrated tuning dial can be se clearly in the chassis photographs. This is made in a simple manner by cut-
ting a piece of 20 s.w.g. aluminium $9 \times$ ting a piece of 20 s.w.g. aluminium $9 \times$ $1^{11 / 2 i n}$, and cementing it $41 /$ in diameter cord drive drum (Jackson Part No. 4029 or similar). The calibrated scale is hand printed with Indian ink on a piece of

S WORLD. DECEMBER 197 glazed drawing paper $81 / 2 \times 11 /$ in held in position by self-adhesive tape along points to be initially marked up in pencil and the paper scale removed for final hand printing, without upsetting the alignment by removing
the gear box drive shaft.
Layout of the Power Amplifier shown in Fig. 15. All components are assembled on a double-sided copper clad epoxy glass board 7×4 in. As both top and bottom surfaces are used as
ground planes they are electrically connected together by twelve 24 s.w.g. tinned copper-wire U links, as pre viously described - four along each ong edge, and two along each shor edge. Three cross screens $4 \times 1 \frac{1}{4}$ in cut
from copper clad board are soldered to the top ground plane to provide inter stage screening. Each screen has a smal slot cut into the bottom edge with quare section file before soldering int position. This is necessary
Tr_{57} is bolted directly to the coppe ${ }^{\text {clad board and this provides adequat }}$ heat sinking. Tr_{58} and Tr_{59} are bolted through the board and through the aluminium heat sink spacer. Each $738 \times 43 / 4 \times 2$ in die cast screening box by 6BA machine screws through clearance holes previously drilled in the appro priate position
The aim is to effect the maximum heat transfer from the shank of the important to ensure that all contact surfaces are free from burs and are perfectly flat. For heat sink spacer deails, see Fig. 16
The screening box is mounted vertically and bolted to the chassis platform
with four 6BA machine screws and nuts. To avoid circulating r.f. currents, the top rear end of the box is electrically bonded" to the chassis rear panel with an aluminium strip $21 / 4 \times 2$ in bent up 90 degrees for $1 /$ in at the narrow end, and screws and nuts. Drive shafts from the panel control knobs to C_{310} and C_{312} are coupled by Eddystone type 893 insuated shaft coupler or similar
Figure 17 shows the layout of the taken through $1,000 \mathrm{pF}$ nut fixing feed through capacitors mounted through he walls and the internal screen of the $71 / 2 \times 5^{1 / 2} \times 1^{11 / 2 i n}$ aluminium screening box. These are $\mathrm{C}_{200}, \mathrm{C}_{206}, \mathrm{C}_{203}, \mathrm{C}_{204}$ an C_{193} in the circuit diagram. The 1.e. supported on C_{203} and C_{204}. If a positio external to the chassis is preferred, uitable panel mounting l.e.ds ar vailable. The MC7805 regulator for the 5 s supply to the phase detector and aluminium bracket, held in position by the 6BA support pillars at the IC_{4} end of the p.c.b. " "
The "S" meter zero setting poter

Fig. 17. Layout of the phase-lock v.c.o. unit, showing the 18 s.w.g. aluminium creening box with internal screen and position of the feed-through capacitor provided by the $2 \times 11 / 4 \times 1 / 2$ in L-shaped support bracket. The p.c. are mounted on 3 sin 6BA pillars.
tiometer R_{63} and the +12 V feed resistor R_{62} are assembled on a small paxolin panel $1 / 4$ in by lin supported by the square section aluminium rail - bet-
ween the front panel and the end of the
s.s.b. generator p.c.b. Terminal posts nd test points can be provided by usin he usual p.c.b. tapered wiring pins owever, because of the danger older running down connections ing across to the ground plane, the author prefers to use Oxley "Barb sulators Type 093/20P. These have .t.f.e. lipped bush which ensures firm mounting in the p.c.b., and also affords The connecting post of the bush is soldered to the underside p.c.b. track with a wire link

Corrections to Part 1.
The second terminal (bottom left corner of Fig. 2, p44) should read "Signal input to FM generator unit," not from. C_{121} in ig. 3, p46, is not an electrolytic, as the rawing wrongly shows. The label fo ransistor, Tr_{24} in Fig. 3, should be CC108. A misalignment in the com ponents list, p56, leaves doubt as to the alue of capacitors, $\mathrm{C}_{73}, \mathrm{C}_{125}, \mathrm{C}_{127}$ and C_{143}. These should be 100 pF polystyren \%. The wiper on $\mathrm{S}_{1 \mathrm{a}}$ is shown inco
rectly connected to +12 V TX. This should be connected to +12 V COM MON.

Corrections to Part 2
 Capacitor C_{219} should be type N750M not N750K as shown in the Parts lis 133.3 to 135.3 MHz (not 134.3 MHz). En of caption with Fig. 10 should read Tr_{56} to be fitted with TO-5 clip-on hea sink $\ldots \ldots\left(\right.$ not Tr_{4}). Resistors R_{223} and R_{25} in this figure are shown incorrectly and $\mathrm{F}_{\text {mo }}$ are 247 k and not 4 k 7 as shown; $\mathrm{C}_{\text {255 }}$ is a ${ }^{20}$ a 5.6 pF tubular ceramic, L_{4}
 This concludes the constructional de ails for the transceiver. The fourth and inal part of this article will describe the alignment

Components list					
Power amplifier		Inductors$53,57,61,64$	2t 18 s.w.g. enamel $1 / 4$ in inside diameter, spaced		
- aill $\pm 10 \% 1 / 2 \mathrm{~W}$ unless otherwise stated)				100:1 ratio worm gear reduction drive unit	
227	$150+1501 \mathrm{~W}$		66	3t 18 s.w.g. enamel $1 / 4$ in inside diameter, spaced to	Transmit converter unit miscellaneous Heatsink, TO-5, clip-on type
229	+100+101W				
232	- 10		$1 / 2 \mathrm{in}$ long		
${ }_{233}^{230}$	27	62, 65	$21 / 2 t 24$ s.w.g. enamel on		
			FX1115 bead .	her coil deta	
Capacitors		55, 59,	inside diameter, close	The following component boards can be	
283, 284, 290 ,	25p air-spaced trimmer30p a airspaced variable		wound, self supporting	obtained from: Neosid Small Orders	
285, 288, 289, 30 p air-spaced variable		Main chassis - miscellaneous		PO Box 86 . Welwyn G	
		1 -	2 pole changeover, 185	Herts AL7 1AS.	
$\begin{aligned} & 293,294,298, \\ & 303,304,308, \\ & 314 \end{aligned}$	$1,000 \mathrm{p}$ solder-in feedthrough			Screening can Cat. No. 622	
			Ohm coil type G2/18	Base plate Cat. No. 610	
			Radio Spares type 40)	Coil former	
286, 295, 299, 305, 309 287, 296	100 n polyester 20	2		Screw core F29 Cat. No. 504	
	$32 \mu 18 \mathrm{~V}$ electrolytic		ohmee 44 coil, Radio Spares		
292, 302 10n polyester 20\%					
297, 307,31330611	32 50 V electrolytic100 V electrolytic33p silvered mica	Terminal block, feed-through type, Belling-Lee			
		1 in diameter control knobs, 70 off Chassis mounting sockets, Belling-Lee L604/		A set of ten double-sided glass fibre p.c.bs is available for $£ 35.00$ (inclusive of v.a.t. and	
	33 p silvered mica'			UK post) from M. R. Sagin at 23 Keyes Road, London NW2. The boards are sup-	
	PT4176B or 2N5641	Aluminium screening boxes:-		Road, London NW2. The boards are supplied roller tinned and drilled, and have all	
Transistors 57 58		$\begin{aligned} & \times 51 / 2 \times 11 / 2 \mathrm{in}, 18 \text { s.w.g. } \\ & \times 2^{3 / 3} \times 1 / 2 \mathrm{in}, 18 \text { s.w.g. } \end{aligned}$		clearance areas etched in the ground plane. The ten boards accommodate a s.s.b.	
	2N5641 Motorola 2N5642 Motorola			The ten boards accommodate a s.s.b. generator, f.m. generator, Rx converter, tx	
		$\times 4^{3 / 4} \times 2$ in, die-cast o. screening boxes as requi		converter, crystal oscillator and mixer, phase detector and loop filter, squelch unit,	
Diodes$33,34$	1N91	V.f.o. Unit - miscellaneous Chassis mounting socket, Belling-Lee			
				v.f.o. circuit, v.c.o. circuit and v.c.o. amplifier.	

Seven－segment／b．c．d．encoder

Design procedure for a clock／calculator chip add－on unit

by David D．Clegg

Calculator and clock chips are now so cheap that with the correct interfacing microprocessor system，saving considerable programming and，indeed， processing time．It is this interfacing that can be a problem because most I．s．i． －calculator and clock chips are designed to
directly drive seven－segment displays． directly drive seven－segment displays
This article，therefore，describes the idesign of a practical
seven－segment－to－b．c．d．encoder，which can be added to the output of a calculator or clock chip to provide a direct b．c．d．
output．The design procedure is of interest because of its potential instructional value．
CONSIDER the normal seven－segment display shown in Fig．1，with a view to designing a seven－segment－to－b．c．d．en－
coder．Most，but not all，calculators output segment A on the 6 and segment D on the 9 ，and while the decoder to be described here has been designed to shown later that the final design actually handles both styles of 6 and 9 ． A casual glance at the seven－segment
display will reveal a certain redundancy in the segments and it might therefore in the segments and it might，therefore，
prove useful to investigate this in case it prove useful to investigate this in case it
is unnecessary to use all of the segments as inputs to the encoder．To do this，the display group for the numbers 0 to 9 is drawn out seven times，omitting one segment at a time，and the end results ten numbers in any display group can be confused．If the omission of a segment results in ten different patterns for the ten numbers，that segment is redundant encoder．
－Figure 2 shows the display group when the segment A is omitted．It can be seen that confusion arises between the numbers 1 and 7 ，so segment A is
therefore essential and cannot be omit－ ted．
Similarly，when segment B is omitted， confusion arises between 6 and 8 and between 5 and 9 ，so segment B must also be retained．When segment C is omit－
ted，however，ten quite distinct patterns result．This segment is therefore redun－ dant and need not be used as an input to the encoder．It is also interesting to note
hat a 6 without segment A and a 9 without segment \bar{D} do not alter the result．Omitting segment D also results in ten different patterns，so it too is redundant and need not be used as an input to the encoder．Even if segment A on the 6 is omitted，there are still ten distinguishable patterns，and since seg－
ment D has already been eliminated either style of 9 is obviously eliminated， Further investigation shows that omitting segment E confuses numbers 5 and 6 and 8 and 9 ，omitting segment F G confuses 0 and 8 ．These segments are therefore essential and must be retained．
Omission of segments C and D in－ dividually does not result in confusion but it is not obvious that omission of
both C and cause confusion．This is shown to be true in Fig．3．It can be seen that there are ten distinct patterns and that seg－
ments C and D in combination deed redundant．As before，both styles of 6 and 9 are acceptable．At this stage in the design it can be stated categorically that an encoder where the redundant

リコレにFフロロ

Fig．3．Displays of the decimals 0 to 9 with both the C and D segments omitted．There are still ten distinct patterns and no confusion between the decimals．

Table 1．Truth table for the seven． segment－to－b．c．d．encoder．．
segments C and D are not used would only accept the two styles of 9 but care will have to be taken later on in the design to ensure that both styles of 6 are also accepted
Table 1 is
coder．For clarity，it has been drawn as if it was for a b．c．d．－to－seven－segment decoder，and the very numerous＂don＇t care＂conditions have not been
tabulated．From this table the following expressions for the b．c．d．output of the encoder can be obtained：
$2^{0}=\bar{A} B \bar{E} \bar{F} \bar{G}+A B \bar{E} \bar{F} G+A \bar{B} \bar{E} F G$ $+\mathrm{ABEF} \overline{\bar{G}}+\mathrm{ABEFG}$
$2^{1}=A B E \bar{F} G+A B \bar{E} \bar{F} G$
$+A \bar{B} E F G+A B \bar{E} \bar{F} \bar{G}$
$2^{2}=\bar{A} \bar{B} \bar{E} F G+A \bar{B} \overline{\bar{E}} \overline{\mathrm{E}} \overline{\mathrm{G}}$
$+{ }_{2}^{3}=A B E F G+A B E \bar{E} G$

These expressions can now be taken one at a time and minimised using five－ variable Karnaugh maps from which the logic circuit can be obtained．The Karnaugh are sh

$$
\begin{gathered}
\dot{2}^{0}=\mathrm{AE}+\overline{\mathrm{E}} \overline{\mathrm{G}}=\overline{\mathrm{E}}(\mathrm{~A}+\overline{\mathrm{G}}) \\
=\overline{(\mathrm{E}+(\overline{\mathrm{A}+\overline{\mathrm{G}}})) \ldots \ldots(\text { de Morgan })}
\end{gathered}
$$

A logic circuit can now be obtained from this reduced expression，as shown in Fig． 5.
Now consider the Karnaugh maps for 2^{1} ，as shown in Fig．6．From these we

Fig．4．Karnaugh maps for the expression 2^{0} derived in the text

Fig．5．Logic circuit for expression 2^{0}

Fig．6．Karnaugh maps for the expression 2^{1} derived in the text．

Fig．7．Logic circuit for expression $2^{\text {i }}$ ．

$2^{1}=A \bar{F}+\overline{B E}$

$=(\overline{\overline{(\bar{F} \bar{F}})(\overrightarrow{\mathrm{BE}})}) \ldots \ldots .($ de Morgan $)$:The logic circuit for the 2^{1} output is therefore as shown in Fig. 7.
The Karnaugh Maps shown in Fig. 8 give the following:

$$
2^{2}=\overline{\mathrm{B}}+\overline{\mathrm{A}} \mathrm{G}+\mathrm{A} \overline{\mathrm{~F}} \overline{\mathrm{G}}
$$

$=B+(\overline{\mathrm{A}+\overline{\mathrm{G}}})+(\overline{(\overline{\mathrm{AF}})+\mathrm{G}}$
(de M.)
$=\overline{B((\overline{\bar{A}+\bar{G}})+((\overline{\bar{A}})+\mathrm{G}}))$
This rather complex looking expression is not quite as difficult to apply to a term $(\bar{A}+\bar{G})$ has already been obtained for the 2^{0} expression, and the (AF) term is available from the 2^{1} circuit. The esulting circuit can be seen in Fig. 9 . Figure 10 gives the Karnaugh maps output:

$$
2^{3}=\mathrm{ABFG}
$$

This has the straightforward circuit hown in Fig. 11.
A careful inspection of the truth table shows that the 2^{3} output is ' 1 ' for decimals 8 and 9 only. It may, therefore, be possible to simplify the encoding for the $2^{2} 2^{1}$ or 2^{0} terms. The outputs 2^{2} and 2^{2} are both ' 0 ' on $0 / 1$ and $8 / 9$ only and it is herefore necessary to use another input to distinguish between decimals $0 / 1$ and decimals $8 / 9$. Investigation of the segment inputs shows that segment G is
suitable for t his as it is at ' 0 ' for decimals 0 and 1 and at ' 1 ' for decimals 8 and 9 . From this argument the 2^{3} output exression can be simplified to

$$
2^{3}=\overline{2^{1}} \overline{2^{2}} \mathrm{G}
$$

$\left.=\overline{\left(2^{1}+2^{2}+\bar{G}\right.}\right) \ldots \ldots$ (de Morgan)
The term $\overline{\mathrm{G}}$ has already been obtained or the 2^{0} expression (see Fig. 5), an he 2^{3} output encoder, as shown n Fig. 12.
The truth of this intuitive design for he 2^{3} encoder can be verified b as follows:
$\begin{aligned} & \text { Let } Z\left.=\overline{\left(2^{1}+2^{2}+\bar{G}\right.}\right) \\ & \text { Therefore } \bar{Z}=2^{1}+2^{2}+\bar{G}\end{aligned}$
$=(A \bar{F}+\bar{B} E)+(\bar{B}+\bar{A} G$
$+A \bar{F} \bar{G})+\bar{G}$
duplicating ($\mathrm{A} \overline{\mathrm{F}} \overline{\mathrm{G}}$) and rearranging we
get: $\bar{Z}=(\bar{B}+\bar{B} E)+(\bar{G}+A \bar{F} \bar{G})$
$=\overline{\mathrm{B}}(1+\mathrm{E})+\overline{\mathrm{G}}(1+\mathrm{A} \overline{\mathrm{F}})+\mathrm{A} \overline{\mathrm{F}}(1+\overline{\mathrm{G}})+\overline{\mathrm{A}} \mathrm{G}$
and since $(1+\mathrm{X})=1$ we have:
$\overline{\mathrm{Z}}=\overline{\mathrm{B}}+\overline{\mathrm{G}}+\mathrm{A} \overline{\mathrm{F}}+\overline{\mathrm{A}} \mathrm{G}$

Fig. 8. Karnaugh maps for the expression 2^{2} derived in the text.

9. Logic circuit for the expression 2^{2}. The inputs $(\overline{A \bar{F}})$ and $(\overline{A+\bar{G}})$ are taken from the circuits in Figs 7 and 5 respectively.

2^{3}

Fig. 10. Karnaugh maps for the expression 2^{3} derived in the text

Fig. 11. Logic circuit for expression 2^{3}

ig. 12. Simplified circuit for the expression 2^{3}. This makes use of the circuit derived for \bar{G} in $F i$. 5

WIRELESS WORLD, DECEMBER 1979
duplicating \bar{G} and multiplying by
$\begin{aligned} \overline{\mathrm{Z}} & =\overline{\mathrm{B}}+\overline{\mathrm{G}}+\mathrm{A} \overline{\mathrm{F}}+\overline{\mathrm{A} G}+\overline{\bar{G}}(\mathrm{~A}+\overline{\bar{A}}) \\ & =\overline{\mathrm{B}}+\overline{\mathrm{G}}+\mathrm{A} \overline{\mathrm{F}}+\overline{\mathrm{A}} \mathrm{G}+\mathrm{A} \overline{\mathrm{G}}+\overline{\mathrm{A}} \overline{\mathrm{G}}\end{aligned}$

and rearranging:

$\bar{Z}=\bar{B}+A \bar{F}+\bar{A}(G+\bar{G})+\bar{G}(A+1)$ Now, since $(\overline{\mathrm{Z}}=\overline{\mathrm{B}}+\overline{\mathrm{G}})=1$ and $(\mathrm{A}+1)=1$ and repeating the above steps with $A \bar{F}$:

$$
\begin{aligned}
\overline{\mathrm{Z}} & =\overline{\mathrm{B}}+\overline{\mathrm{G}}+\mathrm{A} \overline{\mathrm{~F}}+\overline{\mathrm{A}}+\overline{\mathrm{A}}(\overline{\mathrm{~F}}+\overline{\mathrm{F}}) \\
& =\overline{\bar{B}}+\overline{\mathrm{G}}+\mathrm{A} \overline{\mathrm{~F}}+\overline{\mathrm{A}}+\overline{\mathrm{A} F}+\overline{\mathrm{A}} \overline{\mathrm{~F}} \\
& =\overline{\mathrm{B}}+\overline{\bar{G}}+\overline{\mathrm{A}} \mathrm{~F}+1)+\overline{\overline{\mathrm{F}}(\mathrm{~A}+\mathrm{A})} \\
& =\overline{\mathrm{B}}+\overline{\mathrm{G}}+\overline{\mathrm{A}}+\overline{\mathrm{F}}=(\overline{\mathrm{BGAF}})
\end{aligned}
$$

Therefore $\mathrm{Z}=\left(\overline{\left(2^{1}+2^{2}+\overline{\mathrm{G}}\right.}\right)=2^{3}$
The simplified encoder circuit shown in Fig. 12 is therefore a valid means of arriving at the 2^{3} output.
The four parts of the design can now be brought together, as shown in Fig. segment-to-b.c.d. encoder. As already stated, this design will accept both styles of 9 but it has not yet been shown that it will accept both styles of 6 . and 2^{2} expressions, the 'don't care' term

(A $\bar{B} E F G$) has been included in the reduction, thus effectively eliminating The variable ' A ' from the (ABEFG) term. The result of eliminating segment A sions which describes decimal 6 , is tha a 6 either with or without segment A will be correctly encoded.
The actual logic family used to con depend on individual requirements, but
for many applications c.m.o.s. will b quite fast enough. However, the propa ation delay through to the 2^{3} output nay be too long for some systems and The final circuit shown in Fig 13 is not a unique solution to this encode problem, as a close inspection of the Karnaugh Maps will show, but the author believes that it is one of th implest solutions.

Random frequency communication

Military radio communication is of course subject to jamming and interception o nessages. One way on trying to avoid thes ping". The transmitted band of frequencies carrying, say, voice information, is made to op about from channel to channel in ranciom sequence of channels.
receiver tuning must be arranged to hop about in a corresponding sequence for com claimed to be the first public demonstration of frequency hopping was put on by Racal a their own exhibition, Racalex, in Londor recently. It was a prototype system deve
loped for a portable military transceive called Jaguar-V (an acronym from Jamming uarded Radio-V.h.f.) which operates in the
00 to 88 MHz frequency range using 25 kH hannels. The transmitter's frequency synthesizer is controlled by a quasi-random sequence generator, the random numbers in
the sequence being determined by a cod selected by the operator. The output from the ynthesizer is modulated by the baseban gnal, amplified and then radiated. At th trolled by an identical quasi-random sequence generator which is synchronized
with that at the transmitter. A truly random ith that at the transmitter. A truly random sequence would go on for an infinite time
but in this case the time taken for the quasi andom sequence to complete itself exceed. 24 hours.
Synchronization between transmitter and
receiver priodical achieved by transmitting data stream along with the form of a digital data stream along with the voice informa
tion. But since this digital data would stand
out clearly against an analogue voice signa and so make the sync information availabl to an enemy, the voice signal is in fact also
transmitted digitally. The audio signal is converted to a $16 \mathrm{kbit} / \mathrm{s}$ digital form in a delta modulator. The digital signals are then com pressed into short packages and transmitted at a siighty higher rate than normal to make
time for channel changing and the sync signals. At the receiver, the sync signals are extracted and the remaining information digital stream ready for demodulation. The rate at which the system hops between
channels is a matter for careful decision. If it is too slow, a conventional sweep receive can find the signal and lock on a jammer. If it is too fast, the cost becomes excessive. Also
the ratio of time occupied by useful informathe ratio of time occupied by useful informa-
tion to that for changing frequency becomes too small. As rapid frequency changes in evitably generate spurious signals the faster
the hop, the more spurious singals are the hop, the more spurious signals are
generated. Pollution of the whole v.h.f. spectrum by fast hopping is, therefore, a serious risk. Furthermore fast hopping can only send a small amount of information during each
hop period and the synchronizing sequence hop period and the synchronizing sequence
must be spread over a number of hop periods. This makes it more vulnerable to jamming
and slower to synchronise. In fact Racal have chosen a medium hopping rate of several hundreds per second. This operates among 256 channels to give a total bandwidth for the system of 60.4 Mzz , we.
Incidentally, Racal make jammers too, so they can get in on both sides of electronic
(

Counting the phases

Circuits for multi-phase generation
by D. Price, B.Sc., M.Sc., Ph.D., M.I.E.E.

In many logic systems and some linear applications it is necessary to generate a
multi-phase signal with accurate angula relationships. This article describes everal circuits which provide such signals and outlines several short cuts that can be made.

A VARIABLE FREQUENCY multiphase signal with accurate angular relationships can only be generated digitally because a linear system at a single frequency.
In a true multi-phase logic signal each phase has an equal mark-to-space ratio, see Fig. 1(a), and the leading edges of successive phases are $360 / n$ degrees
apart, where n is the total number of phases. Alternatively, pulses $360 / n$ degrees long can be generated sequentially as in Fig. 1(b) and (c).
A simple method of implementing a multi-phase reference signal is to use a Fig. 2(a). Initially the flip-flops can be in any state and after the first few clock pulses the outputs are either all at 1 or 0 . The register then alternately fills and empties and the truth table in Fig. 2(b)
shows that the filling action occurs sequentially. The 2 n phases can be generated from n flip-flops, or n phase can be obtained by selecting every othe output from the shift register, i.e. ϕ_{1}, ϕ_{3} $\phi_{5} \mathrm{n} / \mathrm{m}$ phases separated by an angle of $180 \mathrm{~m} / \mathrm{n}$ degrees. Both m and n are integers and m must be a factor of n Except in the case where $2 n$ phases are logic circuit is not obtained. However, it may be advantageous for practical circuits to choose a more complex design.

When the required number of phases is odd, n bistables are required for n hases, but an even number of phas be generated with $n / 2$ bistables. Circuit operation
When all of the flip-flops are in the zero state, except for FF_{1}, all J inputs will be 0 and all K inputs at 1 . Therefore, a clock pulse will have no effect on FF_{2} to FF_{n} input at 1 , the first clock pulse will set Q_{1} to 1 which puts FF_{2} into a receptive state for the second clock pulse. A line

until the last ($n^{\text {th }}$) flip-flop is reached and when Q_{n} becomes 1 , the next clock pulse will switch Q_{1} to 0 and start Eignal. Elock pulse alters the state of Each clock pulse alters the state of
one flip-flop in the chain. The generation of an even number of phases requires one clock pulse per phase for a requires two clock pulses per phase. Provided that the single-phase clock has a constant frequency, the phase angle will be correctly maintained on all phases as show in Fig. 1. have a random pattern propagating through the shift register, in practice this never occurs and therefore no precautions are needed to ensure the cor-
rect initial conditions.

Short cuts and special cases Several modifications and simplifications can be made for a three-phase
signal. The addition of three exclusive

Fig. 1 (a) Three-phase signal, (b) first five phases of an eight-phase signal
and (c) first six phasts of a ten-phase pulsed signal.

Fig 2 (a) An pube recirclating shift resister, (b) truth table Although thl and Fig. 2 (a) An n pulse recirculating shift register, (b) truth table. Although t.t.l. and positive edge of the clock pulse.

Fig 3 (a) Basic ${ }^{1}$ (b) addition of exclusive $O R$ gates, (c) three-phase waveforms.

WIRELESS WORLD, DECEMBER 1979

OR gates, see Fig. 3, enables a non-
o the correct initial state by using on
symmetrical but correctly phased supply to be generated. The resultant
waveform has a frequency of $f_{c} / 3$, whereas the initial three-phase symme-
trical waveform runs important when operating near the frequency limit of the logic family. The pulse waveform can also be obtained by wiring a basic register without the cross connection. In this
 of the circuits shown in Fig. 4. If the clock is a square wave with an qual mark-to-space ratio a three-phase of $2 f_{c} / 3$. The three phases cannot easily be combined with the clock becaus switching delays cause spurious pulse as shown in Fig. 5. A better approach is to generate two three-phase signal. Fig 6 shows the logic
$\phi_{1} \longrightarrow \longrightarrow$

- \quad 是
$\bar{\Phi}_{1} \subset \longrightarrow 几$

NB. These spurious pulses are less inely to ocar the faster TTL logic system is use

Fig. 5 Spurious pulses from a high

Fig. 6 (a) High frequency three-phase generator. Logic for only one phase is shown. Each extra phase requires a set of gates as shown in the box, (b) waveforms.

Fig. 7 (a) Three-phase generator using two flip-flops, (b) waveforms.

with values shown $f=1 \mathrm{kHz}$
8 (a) Simple three mur nd resistance values must be matched for correct switching, (b) possible unequal and resistance values must be matched for correct.switching, (b) po
time periods if resistance and capacitance values are not matched. nly justified when operating close to he maximum speed of the logic system. ecause flip-flops are usually packaged in pairs, it is advantageous to use a shown in Fig. 7. The flip-flops ar sed as counters with a reset after thre lock pulses. If the small reset spike can e tolerated, for example when the btained directly from Q_{1} and H_{2}, requency three-phase generator.

Fig. 4 (a) Simple initial condition pulse, (b) addition of a Schmitt trigger

Addition of gates to obtain pulse waveform
Fig. 9 (a) Four-phase generator usin two flip-flops, (b) true four-phase
waveforms, (c) pulsed waveforms waveforms, (c) pulsed waveforms.and
(d) variation to give separated pulses.
can be omitted. This system cannot be extended to more than three phases without complicated decoding. A simple circuit for uncritical
applications is shown in Fig. 8. The applications is shown in Fig. 8. The associated RC network and the time constants must be carefully matched to obtain equivalent waveforms for each of the phases. This circuit is only suitable for an odd number of outputs. Th
values in square brackets give values in square brackets give a
frequency of about 1 kHz with t.t.l. and frequency of values below are applicable to c.m.o.s.

Two flip-flops and a quad two input NAND can be used to derive four pulsed phases, see Fig. 9. Care must be taken to combine the correct signals shown in Fig 9(c) Symmetrical occur as shown in Fig. 9(c). Symmetrical signals can be taken from the flip-flop outputs
A variation applicable only to c.m.o.s. designed by M. Burn of Motorola, en sures that the pulses are well separated, see Fig. 9(d).

Variable multi-phase

When pulses with the correct phase relationship are required for applica-
tions such as oscilloscope beam splittions such as oscilloscope beam split-
ting, one 4017 i.c. can be used as shown in Fig. 10. A pulse equal in length to a clock cycle appears on each line every ten counts and the counter can be reset at any stage by connecting the relevant output to the reset. Thus, any number of A similar t.t.l. circuit can be constructed using a 7493 counter and 7442 decoder. If separation of the pulses is required signals should be taken from every
other output. A three-phase source should be wired as a six-phase genera tor and only half of the outputs used as
shown in Fig. 10 (c).

Fig. 10 (a) Multi-phase generator, (b) waveforms for a five-phase signal and (c)
Fig. 10 (a) Multi-phase generator, (b) waveforms for a five-phase signal and (c)
separated pulses obtained by taking every other pulse from a six-phase system.

Why your loudspeaker is full of foam

Calculating the effects and properties of acoustic damping
by Desmond Thackeray, M.Sc., Ph.D., F.R.P.S. Music Dept., University of Surrey

For many years loudspeakers have contained acoustic damping material,
made necessary by peaks in drive unit response or cabinet resonance. With a computer as a calculating colleague in the measurement of the various effects and their influence upon each other, the of assessment of the damping required by the complete loudspeaker. The results are given as "transconductance'"* versus frequency curves and also on a log scale showing the related mass, frequency and

The task of a loudspeaker seems agreeably simple on the face of it. All one asks molecules forward drive plenty of air velocities proportional to the voltages applied and at all frequencies the ear driving a massless diaphragm carried by a suspension of infinite compliance would itself have a constant velocity characteristic. As soon as the diaphragm is allotted a realistic mass how stant amplitude. Alternatively, if a realistic spring is used for the suspension, the characteristic becomes constant acceleration.
With both
With both of these mechanical features present we have a genuine moving rassing low-frequency resonance of considerable Q . Below this frequency is a 'constant amplitude' region and above, this frequency a 'constant acceleration'
region, both presenting severe droop in the characteristic. Fortunately, as long as the cone diameter is less than a wavelength, the rise in acoustic radiation resistance with frequency compensates for the constant The radiated sound intensity therefore tends in theory to a constant value above the resonant frequency and falls at a rate of 12 dB per octave below the resonant, frequency. Not surprisingly, if the acoustic losses, the situation improves. The serious listener has always had an inch or two of felt inside his loud
" "Transconductanc" $=$ ratio of
ments by Small indicate that the most significant damping contribution in many cases may have been air leakage by-passing the bass driving unit. In the last decade particularly, this damping has been augmented by cases just about all the remaining air volume of the cabinet and the cabinet is now an 'enclosure'. The increase in acoustic losses has been easily met by power and the cone of the unit itself is more robustly built to cope with the extra mechanical labour imposed on it. Undeniably the sound has changed and here are devotees of both the old an he new. Empirical adjuseaker systems, aimed at providing a useful measured frequency response and at the same time a toler able sound to the ear, have been fairly to find reasons for specific features of contemporary designs and predictable optimum damping for the loudspeake and cabinet system as a whole. R. Small $1,2,3$ has provided an enten different

Fig. 1. Electrical analogue of a moving . coil loudspeaker unit in vented
L is analogous to mass, and C analogous to compliance. Component values for uncoupled resonant frequencies of about 150 kHz are: about $2 \mathrm{mH} ; \mathrm{C}=470 \mathrm{pF} ; \mathrm{R}$ zero to 4k78. Voltage inputs are eltagey to Bor a voltage step (from (say) the c.r.o. timebase) to A. Substitution of a small inductance ($50 \mathrm{\mu} H$?) for the 270Ω monitoring resistor will provide a simulation
'lift' contributed by radiation lift contri
resistance.
loudspeaker systems, together with charts and graphs for use by intending designers. Although this is certainly obligatory reading for the serious investigator, there is learning by doing'.
losed cabinet raises the mechanical resonance. To avoid this, a venting aperture can be cut in the cabinet. This has the extra advantage area. The mass of air moving in the vent is often increased by building in a throat or is substituted by a piston or drone cone' acting as an auxiliary bass resonator (a.b.r.). Traditionaly,
often mistakenly, this mass tunes the compliance of the air volume in the cabinet to the same frequency as the mechanical resonance of the loud speaker unit itself. These two strongly
coupled resonators then evince a coupled resonators then evith the
double-humped characteristic with two peaks in the response situated above and below the original common frequency of resonance.
Adding these further degrees of free dom to the design extends the system
designer's problem of optimising his system experimentally, there now being the damping of two resonances to optimise. It is presumably helpful to know what should happen theoretically
in such a system, but the arithmetical in such a system, but the involved in the calculations must have been a severe discouragement before the digital computer came along Even with a computer there is stil opportunity for human errors in pro reassuring to have an entirely indepen dent method for providing some check on the results.
If one adopts a fairly simple model of the loudspeaker in a vented cabinet, an cult to deduce. One such is given in Figure 1 and you are asked to suppose that the input voltage V is proportiona to the voltage applied to the voice-coi the three arms are proportional to the velocities of the loudspeaker cone, the air in the cabinet and at the vent, Dam ping is controlled by the adjustment he three variable resistors. I hav driver leakage. Use of an a.b.r. requires the introduction of an additiona
capacitance to represent the compliance of the a.b.r. suspension, in the
manner shown by Roger Driscoll analogue circuit shows no cabinet damping - a touch of reality!
Frequency response
I assembled such a circuit for use in: demonstrations several years ago and the resonant frequencies were in the region of 150 kHz . Then with the driving, lator, and the 'cabinet current' I_{3} displayed on an oscilloscope, the frequency response of the whole system could be seen at a glance and the effect of adjustments visualised instantly.
Twiddling the three damping knobs Twiddling the three damping knobs
immediately showed that the height of the higher frequency peak was controlled principally by adjusting the cabinet damping. Either. of the other two damping contributions served to control the they could be used together to produce an optimum flattening of this part of the response. Neither of these conclusions was known to me previously, but I hope
that knowledgeable readers will tell me where in the literature they are to be found. I think that the explanation is that air is cyclically compressed into the cabinet at the higher frequency response. At the lower frequency resonance the air is cyclically displaced
between driver and vent. The other striking revelation was that the resistor
settings, for an optimum knee-shaped on the conferred very lew ' Q ' value n the two coupled tuned circuits Reference to Small shows that in many of his graphs the optimum overall Q lies between 0.1 and 0.6 . That our cabinet are full of foam arises therefore becaus the manufacturers are trying to produc
experimentally the heavy cabinet dam ping that seems to be required theoretiping th
cally.
It w
It was a task for the computer to

ig. 2. Calculated "transconductance

 s. frequency response curves for the analogue circuit of Fig. 1 with zero and cabinet are both underdamped. in (b) the cabinet has been suitably damped, but not the loudspeaker. the loudspeaker has been suitably damped but the cabinet isnder-damped, while in (d) they are both suitably damped. The frequency value of unity, and is ratioed to the resonant frequency, F_{o} of the oudspeaker unit. The response at each requency has been rounded off to the be seen in (d) that slopes of 20 dB per octave and -3 dB per octave are obtained, the response being about 2 more than half an octave of bandwidth more than
below F_{σ}
provide me with confirmation of thes results in the form of some relevan umbers, together with more flexibility in varying the component values. The results of its complex arithmetic on log-log scales, thus resembling the usual "requency response. Some of the log "transconductance" vs. log frequency curves are shown in Figure 2. As wa gue, the higher frequency peak requires a cabinet ' A ' of 0.5 to tame it (strictly ω_{0} $\mathrm{CR}=2$), while the lower frequency peak is smoothed out by a loudspeaker
'Q' of $1.4\left(\omega_{0} C R=0.7\right)$. The result is a 'Q' of 1.4 ($\omega_{0} \mathrm{CR}=0.7$). The result is a
response with a nicely shaped knee, extending (-3 dB points) over a requency range of 0.6 to 1.6 of the original loudspeaker and cabinet pius vent resonant frequencies (both equal to ω_{0} when uncoupled). The phase res
ponse listed (not shown here) for the underdamped condition showed for the phase shift as the frequency moved from one peak to the other. Will this distress readers who may be conscious can do to waveforms is depicted on page 79 of the November 1977 issue of Wireless World.** The steepness of the low frequency cut-off is markedly sensitive to the way in which the damping is split The 'best' response
model is unlikely to tally with what is achievable with loudspeakers in practice. As far as damping is concerned "not too little, not too much", applies to vent, drone cone or a.b.r.). As the veloc-
ities are at their highest (and thereforemost easily damped) at the loudspeaker and the vent, little material is required at these points. Conversely, farther
back in the cabinet, where the velocities are lower, much more material is needed.
As the frequency range in the damped condition differed only a little from the
spacing of the two undamped peaks, investigated the peak positions as the other variables were changed in mag nitude. The computer program permit ed changes in both cabinet air compl ance and vent air mass and by altering cabinet plus vent resonant frequency. The results are shown in diagrammatic form in Fig. 3, where the end of each plotted line indicates the positions of
the resonant peaks in the system characteristic. The cabinet plus ven resonance is indicated by a dot. The requency scale is again logarithmic centred about a frequency of unity for the loudspeaker unit itself. It can be seen from the top group of three lines
that if the cabinet plus vent resonant frequency is kept equal to the loudspeaker resonant frequency, then the rical about this frequancy symme limits change. A large cabinet compliance and small vent air mass brings the "A check ō on Fourier", by M. ©. sccroggie.

IRELESS WORLD, DECEMBER 1979
peaks together; a large vent air mas nd small cabinet compliance move hem apart. Does this explain why it is radiation from 'bookshelf' cabinets?
In the remaining sets of three lines downwards by changes in the cabinet plus vent resonant frequency. There is owever, a choice of frequency sprea nd if an it can either be pulled range by reducing the cabinet air complianc or downwards by increasing the vent air mass. Doing both simultaneously spreads the frequency response without flines. This explains how it is possible to 'tune' a vented system for optimum response by altering the length of the ent throat or the mass of the piston in he case of an a.b.r. With the peak widespread, a cabinet Q value of about frequency peak and the lower peak now requires a similar Q , i.e. smaller than hat noted before. The frequency range is about 3 octaves, i.e. nearly a decade
The peaks differ in their tolerance mis-O-ing. For the cabinet damping near enough might be good enough but the loudspeaker or vent Q needs carefu adjustment. This is a possible area for ome experiment by any reader humps in their system's response.

Transient response

Another way of examining the (same) nformation available from electrical nalogue or from computer arithmetic is to present it not as a frequency res ponse but in the form of an impulse unction of time following excitation by either a voltage impulse of short dura tion, or a steep-fronted voltage step. A step is available on many oscilloscope as the flyback or the sweep gating signal from the time-base circuit. wo different oscilloscopes that on oscilloscope alone is sufficient to stimulate and display the impulse res ponse. The timebase connection is to as convenient with the component values given, and the Y amplifier wa used up to its maximum gain. With the analogue adjusted for minimum dam ping, the circuit rings splendidly, as on values of $\omega_{0} \mathrm{CR}$ for 'cabinet' and 'loud speaker' of about 1.4. The time for the response to droop to $1 / \epsilon$ of its maximum value can then be doubled by increasing he 'vent' damping to a similar value. damping controls differed a little from that found when exploring the frequency response. It seems importan in shaping the transient to provide both cabinet and vent damping and the ven
damping was not really interchangeable with the loudspeaker damping. Control

Fig. 3. Extent of frequency response for the analogue circuit of Fig. 1. This is hown for various tabulated ratios of vent resonant frequency to
loudspeaker resonant frequency and cabinet compliance to loudspeaker suspension compliance. The frequency ratio is also shown as a dot on the scale centred on the loudspeaker resonant frequency F_{0}
over all three seemed preferable. Using this 'poor man's transient tester' is such networks that interested readers might easily try for themselves. It provides rapidly the kind of qualitative information that is not easily deduced from algebra or arithmetic. Neverthe less, knowledge of the experimental mathematics to the same end-point. For the benefit of readers who may like to try some simple arithmetic on their own 'enclosures', the following formulae provide some of the K of an air volume \bar{V} at atmospheric pressure P, and vented by an aperture of area A, is given by $K=V / P \gamma A^{2}$ (units are metres per newton if working in vent pipe of throat length X is given by a vent pipe of throat length X is given by
$M=$ DAX. The resonant frequency F of the vented volume is then given by $4 \pi^{2} F^{2} M K=1$
or
$4 \pi^{2} F^{2}=(\gamma P / D)(A / X)(1 / V)$
The constants required here are sufficiently accurate for such a crude model:
Vel. of sound $(\gamma P / D)^{1 / 2}=340 \mathrm{~m} / \mathrm{sec}$ atmospheric pressure $P=10^{5}$ new atmospheric density $D=1.2$ kilograms per metre ${ }^{3}$
spec. heat ratio $\gamma=1.4$
The very simple analogue circuit of Fig. 1 in the text above is only directly pliances have been scaled according to he relative areas of the loudspeake cone and the venting aperture. If, for example, the cone area is Φ times the area of the venting aperture, then one
can multiply M by Φ^{2} and divide K by Φ^{2} before they are compared with (or
ratioed to) the cone mass and compliance. This is equivalent to interposing a transformer of ratio $\Phi: 1$ between the loudspeaker series LCR section and the of the circuit, to represent the acoustic transformer factor introduced between two apertures in a cabinet. It can be seen that the remaining step is to gather some information on loudspeake resonant frequency F_{0}, cone mass M_{0}
and suspension compliance K_{0}. Since we are not looking for great accuracy, it may be satisfactory to take the manufacturer's estimate of F_{0}, but this at least is not difficult to measure non
destructively I can think of no way of destructively. I can think of no way of
measuring cone mass that does not involve destruction of the unit, but if the compliance is measured then the mass can be calculated from $4 \pi^{2} F_{0}^{2} M_{0} K_{0}=$ 1. Measuring the compliance involves a disc of card and a felt pad) and measuring its displacement. A millimetre or two is not likely to damage a rugged woofer if the load is well spread, but of risk. The force produced by one kilogram is 9.81 newtons.

References

References

1. R. H. Small, Jour. Audio Eng. Soc (i972) 20,
2. R. H. Small, ibid (1973) 21, 11, 363, 438, 549 ,
3. 3. R. Small, ibid (1974) 22, 592, 683
1. R. H. Small, ibid (1974) 22, 592, 683
2. R. Driscoll, The Gramophone (1975) April,
184 1884.

Further reading:

E. J. Jordan, Wireless World, (November
E. J. Jor3- 537
E. J. Jordan, Wireless World, (January 1971),
$\underset{2-6}{\text {. J. Jordan, Wireless World, (January 1971) }}$

Hi-fi amplifier standard

An international standard giving minimum performance requirements for high fidelity
amplifiers is announced by the International Electroteccnical Commission. It is the latest in a series being produced by the $I E C$ for high
fidelity audio equipment and systems. Called fidelity audio equipment and systems. Called
Part 6 of the Publication 581 series, it provides minimum performance requirements for linear and equalizing pre-amplifieqsis, power amplifiers
and integrated amplifiers primarily intended for and integrated amplifiers primarily intended for
domestic high quality reproducing systems. A domestic high quality reproducing systems. A
first section, on minimum requirements for characteristics directly related to sound quality, covers, for example, effective frequency range,
gain alignment, total harmonic distortion, and gain alignment, total harmonic distortion, and
rated output power. Other characteristics men rated output power. Other characteristics men-
tioned in this section include those related to crosstalk attenuation ibetween stereo channels
as well as inputs), wideband signal to-noise as well as inputs), wideband signal-to-noise
ratio, and weighted signal-to-noise ratio. A second section deals with other characteristics and requirements and includes items on
balance control, loudness control, the marking balance control, Loudness control, the marking
of controls, mechanical and electrical interconnections and characteristics to be specified in manufacturers' manuals.
Publication $581-6$, comprising 19 pages,
can be obtained frem Varembé 1211 G from the 1 EC at 1 Rue de of 25 Swiss francs.
-

 -. $=$ -
 . -,

Sequential interrogation of push switch arrays

Simple circuit prevents multiple switching
by H. A. Cole, M.I.E.R.E. Atomic Energy Research Establishment, Harwel

A method is described in which an array f push switches is electronically scanned simulate the action of a
make-before-break rotary switch. The
method ensures that no matter how many switches are closed at any given time, or in what order, only one will be ffective.
The selection of an event or facility by operation of a push switch is an attrac operate. It is ergonomically efficient and lends itself to clear and unam. iguous legending. However, when an array of such switches is provided preprevent abnormal operation of the circuits being controlled, due to the accidental or deliberate operation of
more than one switch at the same time
This problem is particularly importan in vending machines where, for the minimum outlay, an enthusiastic entrepreneur may attempt to obtain a cock-
tail composed of tea, coffee, orange juice and soup, with milk and sugar, all in one small cup!
Complicated electro-mechanical in erlocks are sometimes used which prevent operation of the entire array
should an attempt be made to operate more than one switch simultaneously. Purely electronic precautionary methods ${ }^{1-4}$ usually rely upon rapid-
action latches which greatly reduce action latches which greatly reduce the
likelihood of chance coincidences Nevertheless, neither method is completely foolproof and the possibility of a
jammed mechanism or abnormal circuit operation is always present
The circuit described here was designed to simulate the foolproof action of a break-before-make rotary switch.
In the circuit a push switch array is In the circuit a push switch array is
electronically scanned and the condition of each switch is interrogated, one after the other by a sequence of shortduration pulses. As soon as an interrogation pulse intercepts a switch which
is closed, the function associated with that switch is automatically selected by a latch and the source of the interrogation pulses is inhibited. No further interrogation occurs and the circuit remains locked in the selected state how many switches are closed, or in

Fig. 1. Full circuit of the "sequentia interrogator."
what order, only one of them will be recognised by the interrogation pulses.
It is arranged that the interrogation pulses are each of more than adequate uration for the latch to be established and the "inhibit" to be applied and tha hey recur at a rate which ensures the expected dwell time of the operator's finger on the switch.
The circuit diagram of an arrangement suitable for a 4 -station push switch array is shown in Fig. 1. In the quiescent (reset) condition the Q and \bar{Q} output levels of the four latches ormed and logic 1 (near- V_{cc}), respectively. The transistor switches formed by Tr_{1} to Tr_{4} are not conducting and the 1.e.d ndicators are unlit; in a practical circu or supplemented by, function-controlling switches.
The reset terminals of IC_{3} and IC_{4} are normally held at a logic 0 level, via the normally-closed contacts of the rese switch S_{5}. During the reset operation hese terminals are taken to a logic 1 evel through the resistor R_{7}. For con-
venience the reset switch has been shown as a manually-operated push switch. In a practical circuit, however the reset potential would probably be applied automatically at the termina square wave oscillator formed from gates 1 and 2 of IC_{5} produces a con inuous output waveform at a repetition rate of 1 kHz . This is connected to the producing 10 decoded output pulses at separate output terminals. These are the interrogation pulses (IPs) and are positive-going. They occur one after nother at 100 Hz , and each has a duraion equal to one period (rms) of the operating condi tion of IC_{2} is controlled by the voltage levels applied to its clock-enable (CE and reset (R) terminals. When these terminals are both held at a logic 0 leve sequence of interrogation pulses. When these terminals are both held at a logic evel IC_{2} is inhibited and no interroga tion pulses are produced. The controling level for IC_{2} is derived from the IC_{4} are in the reset state all inputs to IC are at a logic 1 , its output is at a logic 0 and IC_{2} is enabled. Since only four switches $\left(\mathrm{S}_{1}-\mathrm{S}_{4}\right)$ are employed in the interrogation pulses (IP.IP) from IC are used. These are individually con nected to the four AND-gates com prising IC_{1} and for convenience are arranged so hat torir order of occu cated to the push switches. When push switches $\mathrm{S}_{1}-\mathrm{S}_{4}$ are in the normally-open state the interrogation pulses have no effect on the gates comprising IC_{1}, due
put terminals. The outputs from these保 0 and the circuit is quiescent.
Consider now the case where closed. This places a are simultaneously and 4 of IC ${ }^{1}$, which become enabled. Interrogation pulses scan the gates of IC_{1} in numerical order and, depending upon the point in time when the switches were operated, the first gate to experience a logic 1 on both its inputs
terminals will be gate 3 . The interrogation pulse present at this gate is therefore able to pass through and reach the input terminal of the latch feeding Tr^{2} (upper section of IC_{4}) which is
immediately triggered to the "set"s state. When this happens, its Q-output rises to a logic 1, transistor Tr_{3} is turned on and the l.e.d. in its collector line is illuminated; at the same time, the Q output falls to a logic 0. This is put of which causes an inhibit to be placed on the clock enable and reset terminals of IC_{2}. No further interroga tion pulses are therefore produced and the circuit remains latched to the contion results if one or all of the switches are depressed, or if the reset switch is operated whilst all the switches are depressed
The time taken for a latch to be estab lished and the interrogation pulses to be inhibited is determined by the res typically less than 200ns for the c.m.o. types specified in Fig. 1, a period which is negligible when compared with the The time taken by the interrogation pulses in making one complete scan of up to 10 push switches (the maximum possible using IC_{2}) is 10 ms ; a period
which is very small when compared with the expected dwell time of the operator's finger on the switch and with the mechanical inertia of the switch mechanism.
This circuit can be expanded to operate with up to 10 push switches by connections similar to those given fo IC_{3} and IC_{4} and by replacing IC_{6} with an equivalent 10 -input gate
Simplification of the circuit may b latches in place of IC_{3} and IC_{4} (e.g CD4042/4) and possibly by using tran sistor arrays (e.g. CA3081/2) in place of Tr_{1} to Tr_{4}.

References

1. Elias, J. Latch circuits interlock remot Jan 9 , 1975, pl11. 2. de Haan, J. Circuit eliminates switch
bounce in keyboards and gives latched out put. Electronic Design, 1, Jan 4, 1975, pl18. put. Electronic Design, , Jon 4, 1975 , plis. SN74147, SN74148. Texas Instruments bul letin No. DL-3 7211727, Dec 1972. CD4532BE. RCA Integrated Circuits dat CD4532BE. RCA Integrat

A professional electronics engineer, Harry
Cole spent his first twenty years at Har Cole spent his first twenty years at Harwell
designing portable instruments for the location of radioactive minerals as well as originating a wide range of laboratory
instruments for particle instruments for particle sizing, nucleonic
counting, and analysis of plutonium and counting, and analysis of plutonium and
other radionucleides. He is the author of three books on telesvision principles and of
several papers dealing with scientific several papers dealing with scientific and
electronics topics, some of which have electronics topics, some of
appeared in Wireless World.

Editorial writer for

 Wireless WorldWireless World needs a new person on its editorial staff. Technical communications and an ability to write are essential. The work is varied and includes writing technica news reports and other material, attending meetings, exhibitions,
press conferences and other events, some abroad, and editing contributed technical articles. A good deal of freedom will be given to
a person who shows ability and a person who shows ability and
responsibility. Preferred age rang 25 to 35 . Write to: The Editor Wireless World, Dorset House, Stamford Street, London SE1 9LU.

Solder fume extractor One of the prime hazards involved in batch or production line soldering is the cloud of acrid smoke which emerges from the inevitable burning flux. A solder fume absorber, designed for individual work stations, is now available from ero systems. This is the Komax 80 and it makes use of an axial fan which draws fumes through a polyamid filter. The filter has an absorption rate of about 80% measured against ASHRAE Standard 52-68 and the makers say that it will remain effective for about three weeks in normal use. Vero Systems (Electronic) Ltd, 362 Spring Rd, Sholing, Southampton, SO9 5QJ. WW 301 Tape recorder distortion meter The DM1 distortion meter is intended for measuring thirdharmonic distortion (K_{3}) in tape recorders, and will also measure tape erasure and channel separa- tion. Using a 333 Hz signal, this compact instrument will measure distortion from 0.15% to 15% in three switched ranges with meter f.s.ds of 1.5% and 15%. For erasure and channel separation there is another meter scale marked in dB allowing measurements from- 70 dB to -50 dB in three switched ranges. Three output sockets at the rear provide for other instruments to be connected, for example a wow and flutter meter in conjunction with a decibel/ voltmeter, which combination also allows measurement of frequency response and recording level. A low-high switch allows the oscillator output to be adjusted to the Japanese standard. Bang \& Olufsen Nederland. Measuring Instruments Division, Koninginneeweg 54, 1241 CV Kortenhoef, Postbus 36, Netherlands. ww 302 Logic test probes Fast analysis and troubleshooting of i.c. logic systems is the prime function of the DP-100 "pulser" probe and the DP-50 digital proble. The two items, manufactured by the (American), Dynascan Corporation, are in- tended to be used together in most checking operations. DP-100 "pulser" probe senses the state of the logic and can change substitute logic pulses to speed debugging. It generates either a "one-shot" or a continuous 5 Hz pulse train. The DP-100 obtains its operating power from the circuit under test, is fully overload protected and compatible with t.t.l., m.o.s. and c.m.o.s.	as is the DP-50. The DP-50 digital probe is a 50 MHz instrument which displays logic activity as three l.e.d. indicators to indicate pulse presence and high/low logic states. An unusual feature is a "memory freeze" which stores pulse display. The $\mathrm{DP}-50$ has a $2 \mathrm{M} \Omega$ input imped-DP-50 has ance, is fully protected from overload and detects pulses to within 10 ns . Distributed by Empire Exporters, Inc, Plainview New York, USA. WW 303 Remote temperature controller Operating over the range $-200^{\circ} \mathrm{C}$ to $+1600^{\circ} \mathrm{C}$, the CAL 6101 electronic temperature controller from Controls and Automation can switch a 3 kW resistive load (at $14 \mathrm{~A}, 220 \mathrm{~V} 50 \mathrm{~Hz}$). This range is covered by nine versions of the controller, each of which com- prises two separate sections, the plug-in control section and a remote bezel and dial giving, according to the makers, greater flexibility in mounting. The dial potenter the controller by a single flexible	lead. The controller makes use of proportional control methods and features an error margin of $\pm 1 \%$. It will also accept thermocouple or PT100 inputs, two or three wire. Controls and Automation Ltd, Regal House, 55 Bancroft, Hitchin, Herts SG5 1LL WW 304 Sub-miniature microswitch The SSL series is the latest addition to the IMO/OMRON range of microswitches. Measuring only $10 \times 6.5 \times 19.7 \mathrm{~mm}$, they offer a contact current rating of 5 A at 240 V a.c. and an estimated life of 10 million operations. They are available in three styles: plunger (SSL1), hinge iever (SSL1L) and hinge roller (SSL1L2). Construction is of polycarbonate and stainless steel while connection is made through 0.5 mm thick terminals for p.c. board or solder connection. The complete series is available ex-stock. IMO Precision Controls Ltd, 349 Edgware Road, London, W2 1BS. WW 305 Signal-powered receiver A package containing an earpiece, a silicon diode, a compression trimmer, a short length of ferrite rod and a length of enamelled copper wire comprise the Home Radio crystal receiver construction kit. An earpiece jack, two capacitors and a connecting block are also included for the total cost of $£ 2.50$, inc. v.a.t., and postage. Home Radio (Components) Ltd, 234-240 London Road, Mitcham, Surrey CR4 3HD. WW 306

Logic slide switch Applications including speed control of models and process control programming are quoted by Egen Electric for its logic slide switch. This is based on the Egen slide potentiometer and provides 15 outputs on a grey-scale code with 0 to 9 b.c.d. outputs. Maxi- mum working voltage is 20 and normal operating current is 10 mA . Contact resistance is operations. Egen Electric, Ltd, Canvey Rd, Canvey Island, Essex SS8 0PG. wW 307 Rain detector An instantaneous warning, triggered, so the makers, Chromatronics claim by the first drop of rain, is provided by the "Rain Check", a device which operates from a single 9 V battery. The unit is housed in a plastics box measuring $13 \times 9 \times 4 \mathrm{~cm}$ and this is designed to be mounted in the home. The gold-plated rain sensor is connected by twin flex and can be mounted in any external location where advance warning of rain is required. Battery life is reckoned at one year in normal operation. Cost is $£ 9.95$ including VAT. Chromatronics, Coachworks House, River Way, Harlow, Essex WW 308 80A earth leakage contact breaker Designed primarily to meet the changing load requirements in new electrical installations, the HO5 earth leakage circuit breaker is said by the makers, B and R Relays, to fulfil such demands by operating at a maximum rating of 80 A . Two versions are offered, preset to a tripping sensitivity of either 100 mA or 500 mA , the latter to prevent "nuisance" tripping in an unTripping speed is 30 ms which the makers say is adequate to isolate faulty equipment before serious	damage can occur and with the HO5's introduction, this manufacturer's range of circuit breakers now extends from 13 to 80A ratings, with trip currents from 7 mA to 500 mA . B ar Relays Ltd, Templefields, Harlow, Essex CM20 2BG. WW 309 Hole cutters As well as offering a compact wallet for the pocket, G and J Hall also provide a 30 cc pot of "Conecut" cutting compound for use with their standard sheet and tube drills. Two sets are available for specific trade applications. The "electrician's" set, CP2025 contains "Conecuts" 1 and M25, providing a set of tools to produce holes of 20 mm and 25 mm in diameter. The "electronics" set, CP2230, contains "Conecuts" 1A and 2 which can be used for 22.2 mm and 30.5 mm International Standard hole sizes for the fitting of pushbuttons and indicator lights in control panels. Photo shows the comprehensive "pocket kit", CP210. G and J Hall Ltd, Burgess Rd, Sheffield, S9 3WD. WW 310 U.h.f. modulator Computer graphics and v.c.r. applications are the areas of use for which Astec's UM1286 u.h.f. modulator is intended. The vision carrier is pre-tuned to channel E36 (591.25 MHz) and the integral sound sub-carrier oscillator may be pre-tuned to either 5.5 MHz or 6.00 MHz . Separate balanced modulator circuits are used to provide improved linearity and	low content of undesirable mixing products. Colour sub- carrier and sound sub-carrier beat product is -55 dB with respect to carrier, resulting, according to Astec, The modulator free pictures. The mos measures $71 \times 37 \times 20 \mathrm{~mm}$ and current consumption is 9 mA with a recommended supply of 5 V $\pm 10 \%$. Astec Europe Ltd, 4A Sheet St, Windsor, Berks. ww 311 Slave telephone dialler Instant dialling, with attendant savings in time spent at the telephone, is the function of the TeleDialer 32. The makers, STC, necessary delays by holding in electronic memory important numbers, ready for instant connection to the wanted party at the push of a button. Up to 16 digits can be programmed for a single number and changes can be easily keyed in. A standard push-button key-pad and a 32 space programmable directory is featured and as well as 28 buttons set up in column form for frequently-made calls, four colour-coded buttons accommodate emergency numbers. Further features include a "reconnect" facility, where, by pushing button 32, the latest number committed to the memory can be reconnected, and a built-in speaker allows the number to be dialled without lifting the telephone handset. William Love and Co, 720 George WW 312 Optical fibre e.n.g. camera Shoulder or tripod operation is possible with the KCA 100 optical fibre camera now in production by Bosch of Germany. The camera head weighs 5.5 kg and consists of a fold-down section containing the optical block, a central section for signalprocessing p.c.b.s and various exchanging these units, the KCA 100 can be adapted to operate in the e.n.g. (electronic newsgathering) mode or as a remotely-controlled unit operating from a base station via multiwire or optical fibre cables. Laser transceivers at the base station and camera head in conjunction with optical fibre enable the camera to be remotely con- trolled from several miles away with a cable weight saving of approximately $30: 1$ when methods. Auto-centering and auto-focus are unusual features of this camera, the focus system using a low intensity infra-red laser which provides reflections for distance evaluation leading to	accurate focussing. Robert Bosch GmbH, Darmstadt, W. Germany. WW 313 Peak programme meter "Very nearly the same specification as the BS5428" (BBCrecommended) peak programme meter, is the recent claim made by the Soundex Division of Bulgin Electronics for their PPM402 meter. This is a peak-reading meter which has been introduced to complement the makers' range of "professional" meters, and dynamic range, frequency response and "ballistics" are claimed as similar to the BS5428 form. The scale is calibrated in dB with a red "overload" region. The price of the meter, complete with amplifier and instruction leafl Soundex are offering a free "line-up" oscillator with each order received before 24 tronics, Soundex Ltd, Park Lane, Broxbourne, Herts. WW 314 Field strength receiver High precision measurement of field strengths and interference (to CISPR and MIL specifications) and tuned frequency volt- age measurements in laboratory and test departments are the principal applications of the ESH2 test receiver now available from Rohde and Schwarz. The unit monitors the frequency range 10 kHz to 30 MHz with an input sensitivity (sine wave) ex- tending from -30 dB to +137 dB ; voltage measurement error is $<1 \mathrm{~dB}$, field strength measurements $<2 \mathrm{~dB}$, and the unit is intended to complement the ESU2 v.h.f./u.h.f. test receiver, which covers the range 25 to 1000 MHz . The ESH2 can be tuned in steps of 100 Hz or 10 kHz over the complete frequency range without the need to change ranges. and can be powered from the mains or from a 12 V or 24 V adaptor for use in the field. Rohde and Schwarz GmbH and Co KG, Pressestelle, Muhldorfstr 15, Munich 80, W. Germany.

Advanced comfort

Advanced Passengers wondering when their Train is going to come on-line, so to speak, ought to be informed that heir comfort is not being neglected There exists the Jacobmeter, which is
nothing to do with measuring the brittleness of biscuits or the strength of ladders, but is a device which uses accelerometers, amplifiers, and a.-to-d. converters and a bit of calculation to whole lot is whistling along at some unnatural speed. British Rail have your well-being at heart, as always.
Those like myself who are not likely o be advanced passengers may jus tion at these gladsome tidings. Hurriedly, I must admit that I am not against comfort - indeed, my wife holds the sincere conviction that I invented it. No. I I ever become a temporary Advanced evel' so painstakingly achieved: it is ust that I feel we ordinary Retarded assengers could do with a bit of atten tion too. Nothing dramatic - just a and discarded copies of the advertising magazines those girls hand out. If they've got money and staff to xpend on electronically measuring comfort level when a few human botvide much the same information, then I don't want to hear any more about trains being cancelled because of staff hortages.
It may not be such a sybaritic experience as all that, anyway, to be an
Advanced Passenger. The electronics are "built in a rugged, die-cast box designed to withstand the buffeting ndured by a portable instrument in a industrial environment"

Response time

When you have parted with a wodge of and sat back to wait for your piece of electronic gubbins to come, and waited and waited and waited, unworthy thoughts sometimes fic, unbidden, throught of people. Correspond most with the company in question begins with a polite enquiry, progresses through highly libellous accusations of skulduggery and malpractice and then, letter to us, copy to the company It is one supposes, the letter writer's hope that a quick 'phone call from us will cause a frenzy of activity, with incompetent fools of dispatch clerks being of free transistors immediately sent to the complainant as a softener.
Well, all-powerful we may be, scourge of the ungody - perhaps, but miracle

home to me, I had cause, recently, to and, at one point, wished I had a kindly and protective journal to espouse my cause. I ordered a speaker drive unit some time ago and had to wait four months to get it; a cheque for a pickup
spare went off in June and I heard nothing till September. Telephone calls were met with promises of rapid action, which were evidently forgotten the second the 'phone was put down.
There may be good reason There may be good reason - shor-
tage, for example - for the inability to deliver, but the deafening silence which is very often the result of one's offer to trade does tend to cause one to suspect the worst, particularly when one's cheque'se's bank account at the someone thought.
Is it too much to ask that the ordinary courtesies of commerce be preserved? A simple post-card, saying that the goods
aren't in stock, but that you aren't arented, would save you awful being ill-feeling.

While Rome burns

There is famine in Cambodia. The Vietnamese have nowhere to go and precious little to sustain them. India has starving millions, as always. In any one are having a pretty thin time of people the cradle to the grave, what with not having enough food and suffering from diseases which curtail life or make it well nigh unbearable. Clearly, what is nations with a surplus of material and good supply of brain power to equalise the load. Science could help by developing methods of distribution, agriculural technics, easily-administered medicines and
munications. munication
microprocessor-controlled doorbell! According to the handout, it will brighten our lives". I don't want to matic of what is going on without much in the way of protest. There is nothing wrong with using a microprocessor to play Greensleeves or with flooding the
date, day, year, century and cast one horoscope at the touch of a button. Neither is there anything inherently reprehensible in allocating billions o
dollars to discover that the Moon, and Jupiter are no match for Majorca a a resort. Taken in conjunction with the knowledge that a major proportion o the world's population hasn't even a of priorities does, nevertheless, seem bizarre, to say the least. I haven't any answers to this problem
of misdirection of effort, except to of misdirection of effort, except to observe that scientists have been their own. Still, millions of undernourished people can't expect to assume the same importance in the scale of affairs as the development of a better mouse
trap or the next world-bating range trap or the next world-beating range of

Flights of fancy

Some time fairly soon, a rather nervous pilot is going to sit in the right (maybe even the left)-hand seat of a Braniff he ought to own up to the passengers if he ought to own up to the passengers. If
asked, he will possibly come clean and admit that, until this moment in his career he hasn't, to be absolutely frank, actually been in a 727 before. He will, no doubt, feel impelled to point out that
although his practical experience of driving this particular aeroplane leaves something to be desired, he has put in a lot of hours on a simulator, which is very largely the same as flying except it doesn't use nearly so much jet fuel. He has sat at the sharp end of many other aeroplanes; it's iust this one he can't claim to be entirely on first-name terms wand
Candour compels me to admit that, if with the pilot's passenger, entrusted wut of that 727 in a matter I would be hammering on the booking counter of another airline. Any other airline Redifon, who make the Novoview fight simulator, have a lot of experience must have devices and, over the years, of time and monery ins a great deal conversion time on to new aeroplanes But I feel sure that they always intended simulator training to be in the 'as well as' category, not the 'instead of'. Howver convincing the accelerations pro duced by the movement of the simula enerated pictures seen through the windscreen, I for one would take a lot of persuasion that flying a computer is as way as doing the hard and expensiv We,
We're safe for the time being, at least. to be as keen on the idea as the Americans.

 HELPOT DIALS. Standard 10 Tt type to fot \%th bush.

$\underset{f}{\substack{\text { inc } \\ \text { f13 } \\ \hline}}$
 $\underset{\text { E13 }}{\text { annected }}$ BLOWERS. Heavy duty single ended 240 V 2850 RPM outte, $21 / 2 \times 3 /{ }^{\prime \prime}$, new unused. VARIAC UNITs for use on $180 \mathrm{~V} 500 \mathrm{c} / \mathrm{s}$ dual gang 15 amp ea section can be used on
$50 \mathrm{~V} 50 \mathrm{c} / \mathrm{s}$ new cond.

 STANDARD CELLS. Müinead type D .845 -D volts 1.01859 size $31 / 2 \times 1 / 1 / \times 6^{\prime \prime}$. E5.7
 Or 2 for
 infra G Gens ctan

 soc/s metres elc $E 30$.

Prices include carr / postege \& Vat. Goods ars ex equipment uniess stated new. SAE for list $\mathbf{2 3}$ or enquiry:		

A.H. SUPPLIES

122 Handsworth Rd.. Sheftield, S9 4AE. Ph. 444278 (0742).
WW - 062 FOR FURTHER DETALIS

We stock the products of

EAGLE	KNIPEX	NEWNES
WELER	SERVISOL	JLYBEAM
DRAPER	BARNARD'S	LIDEN PLASTICS
SPIRALUX	\& BABANI	GREENPAR

B. BAMBER ELECTRONICS

5 STATION ROAD
LITTLEPORT, CAMBS.
TELEPHONE (0353) 860185

1980 ELECTRONICS CATALOGUE NOW AVAILABLE PRICE 75p + 20p POSTAGE. IF YOU SEND £1.55 YOU WILL RECEIVE OUR CATALOGUE PLUS SIX BI-MONTHLY SHORTFORM GATALOGUES TO KEEP YOU UP-TO-DATE WITH PRICES AND SPECIAL OFFERS

Speak to the specialists

B424 LCR Meter

Accuracy $\pm 0.25 \%$. Fast connection of components with immediate direct reading; pass/fail indicator; high efficiency at low cost. Easily used by non-technical staft especially at goods in, on the production line or at final Quality Control.

B605 LCRD and Q Automatic Component Bridge Accuracy $\pm 0.1 \%$, with microprocessor and memory. Automatic trim and ranging; 2,3 or 4 -terminal measurements. Select from 3 test frequencies: $100 \mathrm{~Hz}, 10 \mathrm{kHz}$ and 1 kHz . A versatile instrument for Quality Control or R \& D.

B905 LCRGD and Q Automatic Precision Bridge Accuracy $\pm 0.05 \%$ Microprocessor, memory and many sophisticated options including automatic sorting, binning and remote control. Can form the nucleus of a fully automated test system. Write or ring today for details.

PA GROUP\&
DISCO UNITS DISCOUNITS

TRADE WITH THE ARAB WORLD AND AFRICA

Announcinga

unique exhibition-and a unique opportunity for yourcompany

In June next year, in Paris, one of the most important exhibitions of the 1980 s will be staged. It will help identify outletsfor industrial products - including agricultural machinery and agrochemicals, consumer goods, works and services It will provide a showcase for the developing nations. And it will be attended only by ministers, heads of industrial organizations, senior government officials, directors of development projects and other top decision-makers.

Expansion-Cooperation 1980-1990 will provide a unique opportunity for exhibitors to expand sales, meet potential customers and end-users, plan joint ventures and contact Arab investor for projects in the West and in Africa. The exhibition is organized
with the co-operation of the Arab Bank and is under the patronage of the French Government, the O.P.E.C. Special Fund and 26 Arab
Ministers.
Perhaps your company is new to the Arab and African markets. Perhaps it has long experience of doing business in one or more of the countries there. Either way, you will scarcely find a better or more economical opportunity of through this exhibition
For further information and exhibition details, please contact Bryan Cassidy or Wendy Jesty, IPC Business Press Limited, Surrey House, 1 Throwley Way, Sutton, Surrey SM1 4QQ. Tel: 01-6438040 Telex: 946564 Bisprs-G

CNIT PARIS LA DEFENSE $9 / 15$ JUNE 1980
EXPANSION COOPÉRATION

[^3]N SVewBear Books 단 Al:

All West Hyde cases are available with substantial discounts for quantities. The Mod-1 Range have price breaks at $5,10,25,50$ and 100 off (20%
discount at 100 off) Prices include post and packing and are correct at press date. Please add VAT. 10% discount is given on first two price breaks
WEST HYDE DEVELOPMENTS LIMITED, Unit 9, Park Street Industrial Estate, AYLESBURY, BUCKS. HP20 1ET. Phone: Aylesbury (0296) 20441. Telex: 83570 WW - 046 For further details

with a B\&K-PRECISION CRT Restorer/Analyzer

Sole UK Distributors for the B \& K $\quad \begin{aligned} & \text { method lets you see the } \\ & \text { performance of each gun on }\end{aligned}$ 467 CRT Restorer/Analyzer. The 467 tests and restores CRT faster tha
possible.
Restoration is so reliable that you can actually guarantee results! Tests have shown that 95% of restored CRT's function as well as new tubes!
The 467 Restorer/Analyzer is ideal for the active service shop
where time is most valuable. Its exclusive patented TriDynamic
performance of each gun on its ow
meter, simultaneously. Computer derived digital circuitry tests all three guns of a color picture tube in programmed se 467 Exclusive Features: B \& K Precision TriDynamic multiplex technique to test all three guns of color CRT simultaneously, under actual operating condition
Measures beam current that Measures beam curont that actually passes through G1 aperture
to screen. Unique computer-derived
ligital circuitry for accurate results. Tests focus electrodes lead continuity to catch faults that other testers miss. Uses the most powerful restoration method known for best results with minimal danger to CRT. Removes shorts and eakage to save more CRT's. All including "in-line" and "one-gun" types for accurate results. Obsolescence proof: perpetual set-up chart updates and new adapter development.

B KRefision OYNASCAN

For the full range of Electronic Test Equipment:
including Capacitance Meters DMM'S Frequency Counters Scopes Power Supplies and

BK PAECIION DYNASCAN

RADIOSUPPLIES(Components)LTD.

P.O.BOX 27.39 WHITBY STREET.HARTLEPOOL,CLEVELAND. TELEPHONE: 0429-75750/0429~68002

NRDC-AMBISONIC UHJ

SURROUND SOUND DECODER
 The first ever kit specialy produced by integrex for this British NRDC backed surround sound system which is the result of 7 years research

 The unit is designed to decode not only U'HJ but virtually all other 'quadrophonic' systems (Not CD4), including the new BBC HJ 10 inpulselections

Complete kit, including licence fee $£ 49.50$ + VAT
or ready built and tested $£ 67.50+$ VAT

NEW S5050A STEREO AMP

50 watts rms-channel. 0.015% THD. $\mathrm{S} / \mathrm{N} 90 \mathrm{~dB}, \mathrm{Mags} / \mathrm{n} 80 \mathrm{~dB}$.
Output device rating 360 w per channel
Tone cancel switch. 2 tape monitor switches
Metal case-comprehensive heatsinks
Complete kit only $£ 63.90$ + VAT

INTRUDER 1 Mk. 2 RADAR ALARM

With Home Office Type approval
The original "Wireless World" "published Intruder 1 has been re-designed by Integrex to incorporate several new features, along
with improved performance. The kit is even easier to build. The internal audible alarm turns off after approximately 40 seconds and with improved performance. The kit is even easier to build. The internal audible alarm turns off atter approximately 40 sec,
the unit re-arms. 240 V ac mains or 12 V battery operated. Disguised as a hard-backed book. Detection range up to 45 feet Complete kit $£ 49.50$ plus VAT.

Wireless World Dolby noise reducer

trademark of Dolby Laboratories inc.

	$\frac{-2}{c}$

- switching for both encoding (Iow-level h.f.compression) and decoding
switching for both encoding (low-level h.f. compression) and decodi
a switchable f.m. stereo multiplex and bias filter
ans
a swichable f.m. stereo multiplex and bias ther.
oprovision for decoding Dolby t.m radio transmissions (as in USA)
o no equipment needed for alignment.
- no equipment needed for alignment.
- suitability for both open-reel and cassette tape machines.
check tape switch for encoded monitoring in three-had
- suitabitity for both open-reee and cassette tape machines.
check tape swith for encoded monitoring in three-head machines.

Also available ready built and tested .
Typical performance
Noise reduction better than 9dB weight Noise reduction better than 9dB Beighted.
Clipping Ievel 16.58 F above Dolby level (measured
at 1% third harmonic content)
Harmonic distortion 0.1% at Doliby level typically
0.05% over most of band, rising to a maximum of
0.12% Signal-to-noise ratio 75 FB (20Hz to 20 KHz , signal
at Doliby levell) at Monitor output

Calibration tapes are available for open-reel use and for cassette (specify which) Dynamic Range $>90 \mathrm{db}$
Dynamic Range $>$
30 mV sensitivity.
Complete Kit PRICE: $£ 43.90$ + VAT

Single channel plug-in Dolby (N40) PROCESSOR BOARDS $(92 \times 87 \mathrm{~mm})$ with gold plated contacts and all components
Please add VAT @ 15%
We guarantee full after-sales technical and servicing facilities on all our kits, have you checked that these services are available from other suppliers?

INTEGREX LTD.
rlease send 'SAE for complete lists and specifications Portwood Industrial Estate, Church Gresley, Burton-on-Trit Stanfs DE11 9P

S-2020TA STEREO TUNER / AMPLIFIER KIT

SOLID MAHOGANY CABINET

A high-quality push-button
FM Varicap Stereo Tuner combined with a 24 W r.m.s. per channel Stereo Amplifier.

Brief Spec. Amplifier Low field Toroidal transformer, Mag,; input, Tape In/Out facility (for noise reduction unit, tc.), THD less than 0.1% at 20 W into 8 ohms. Power on / off FET transient protection. All sockets, fuses, etc., are PC mounted for ease of assembly. Tuner section uses 3302 FET module requiring no RF alignment, ceramic IF, $88-104 \mathrm{MHz}$. 30 dB mono $\mathrm{S} / \mathrm{N} @ \uparrow .2 \mu \mathrm{~V}$. THD 0.3%. Pre-decoder 'birdy' filter. PRICE: £59.95 + VAT
NELSON-JONES MK. 2 STEREOO FM TUNER KIT Price: E69.95 + VAT.
NELSON-JONES MK. I STEREO FM TUNER KIT

A very high performance tuner with dual
gate MoSFET RF and Mixer front end,
triple gang varicap tuning, and dual cer-
amic filter/dual IC IF amp.

Brief Spec. Tuning range $88-104 \mathrm{MHz}$. 20 dB mono quieting @ $0.75 \mu \mathrm{~V}$.
Image reiection - 70 dB . IF reiection - 85 dB . THD typically 0.4%. IC stabilized PSU and LED tuning indicators. Push-button tuning and AFC IC stabillzed PSU and LED tuning indicators. Push-button tuning and A Compare this spec. with tuners costing twice the price.

Mono $£ 36.40$ + VAT With ICPL Decoder $£ 40.67$ + VAT With Portus-Haywood Decoder
$£ 44.20$ + VAT

Sens. 30dB S/N mono @ $1.2 \mu \mathrm{~V}$
THD typicallv 0.3%
Tuning range $88-104 \mathrm{MHz}$
LED sig. strength and stereo indicator

AMPLIFIER KIT
Developed in our laboratories from the highly successful
 switches, sockets and fuses are used for ease of assembly and to minimize wiring

Typ Spec. $24+24 \mathrm{~W}$ r.m.s. into 8 -ohm load at less than 0.1% THD. Mag. PU input $\mathrm{S} / \mathrm{N} 60 \mathrm{~dB}$. Radio input S / N LdB. Headphone output. I ape in/Out facility (for noise reduction unit, etc.). Toroidal mains transformer

PRICE: $£ 35.95$ + VAT

Please phone for availability before ordering. All our price include 15% VAT.
 include 15% VA Companies invite Compani price list.
 WHOLESALE

ELECTRONIC COMPONENTS

AU113 BC183A
BC 184L
BC 212A
4v7 ZENER 3K. PRESETS
BA800
7448 DISC
STOCK PRICE
\(\begin{array}{rr}183 \& .98
2,000 \& .036\end{array}\)
\(\begin{array}{ll}2,000 \& .036
7,000 \& .036
4,000 \& .036\end{array}\)
4,000
12,000 20,000
20,000 6 6
6,000 10,600 10
10,000 10,000
We also buy large packages of Components.
\section*{STRUTT}
\section*{ELECTRICAL AND MECHANICAL} ENGINEERING LTD 3c Barley Market St., Tavistock, Devon PL19 05F Tel: TAVISTOCK (0822) 5439. Telex: 45263

Now the bench power supply takes a major step forward! - Simultanieous digital metering of voltage and current. 0.1% accuracy, Resolution of 0.01 volts and 0.001 amps. - True constant voltage or constant current operation. - Current Limit can be set precisely without shorting the ourput. - Designed to rigorous quality and safety standard.

Thurlby $\begin{aligned} & \text { PL Series: } 30 \text { volt } / 1 \text { amp, } 30 \text { (illustrated): } 0.30 \text { volt } / 2 \mathrm{amp} \text { singles and duats } \\ & 0-30 \text { volt at } 0-1 \text { amp } £ 99.70+\text { VAT }\end{aligned}$ Full data and distributor list from Thurby Electronics
Coach Mews, st. Ives, Cambs. PE17 4BN. Tel: 048063570 ww - 052 FOR FURTHER DETAILS


```
ELECTRONIC KITS OF DISTINCTION FROM F
DE LUXE EASYTO BUILD LINSLEY-HOOD
75W STEREO AMPLIFIER £99.30 + VAT
```



```
M
l
WIRELESS WORLD FM TUNER £70.20 + VAT
```



```
*)
LINSLEY-HOOD CASSETTE DECK £79.60 + VAT
M
M
```


TRANSCENDENT 2000

|IIIIIIIIIIIIIIII
ninat tize 24.6"x15.7 $7^{4 \times 4.8^{4}}$ (raer) $3.4^{4 \prime}$ (front)

TRANSCENDENT 2000
SINGLE BOARD SYNTHESIZER
As featured in Electronics Today international o

CHROMATHEQUE 5000 5-channel lighting effects system

COMPLETE KIT ONLY
$£ 49.90$ + VAT
All kits also available as separate packs (e.g.
P.C.B. component sets, hardware sets, etc.). P.C.B. component sets, hardware sets, etc.).
Prices in FREE CATALOGUE.

T20 + 20 AND T30 + 30 20W, 30W AMPLIFIERS

 dal prices for Complete kits T20+20 Kit price $£ \mathbf{~} \mathbf{3} \mathbf{3 . 1 0}$ + VAT T30+30 кIT PRICE $£ 38.40$ + VAT avällable as separate packs - prices in our free catalogut POWERTRAN SFMT TUNER

PRICE FOR COMPLETE KIT $£ \mathbf{3 5 . 9 0}+$ VAT avallable as complete kit only
\qquad

DIGITALLY CONTROLLED, TOUCH SENSITIVE, POIYPHONIC, MULTI-VOICE SYNTHESIZER
\qquad

 -

COMPLETE KIT ONLY £365.00 + VAT!

EXPORT A SPECIALITY!

Value Added Tax not included in prices UK Carriage FREE

31 s.t. 1979 , it tris monthis aciverisement is mentioned unti, December

Sill
 OR FURTHER INFORMATION PLEASE WRITE OR TELEPHONE FOR OUR FREE CATALOGUE

POWERTRAN ELECTRONICS

 ANDOVER HANTS SP10 3NN (0264)64455\cdots
TRANSCENDENT DPX
As featured in Electronics Today International August, September

The $\mathbf{7 2 0 8} \mathbf{6 0 0}$ MHz Mini Counter

the quality low cost counter

 Buatteries (Optional).

DESCRIPTION

The Davis 7208 VHF-UHF Frequency Counter incorporates the latest LSI

 The 7208 can also be operated
option. Price $£ 145.00+$ VAT. ww - 084 FOR FURTHER DETAILS
26 CHILDWALL LANE, LIVERPOOL L14 6TX MERSEYSID

工1 IVewBear Components

CALLERS AND MAIL ORDER: 40 Bartholomew Street, Newbury, Berks. Tel: 063530505

CALLERS ONLY: 220-222 Stockport Road, Cheadle Heath, Stockport Tel: 0614912290

How to become a
 SUCCESSFUL CONSULTANT

in your own field

Have you ever
for yourself?
Well maybe you can! Many people are amazed when they discover the tremendous amo chumplated - experience and knowledge tha others will gladly pay for. Literally thousands of people who made that discovery are now prospering as in thendent consultants.
The way to begin is by reading How to Become a Successful The way to begin is by reading How to Becon
Consultant in Your Owrfield by Hubert Bermont.
Clear, straightforward, packed with solid information and advice, this authoritative manual tells you everything you need to

Here's a sampling of the contents
1).

- How to get started (See Chapter 3).
How to operate your business-a collection of
- What to charge your clients-plus five helpful rules on fees (Se

Why you should never work on a contingency (speculative)
Why you should never work on a contingency (speculative)

- Ingenious ways to promote yourself-and make people want - Countracts: why you should avoid them at all costs. (See Chapter Just what do consultants do all day? (See Chapter 11). Jost what do consultants do all day? (See Chapter 11).
How to market your ideas. (See Chapter 11).
Why youll - Why you'll never have to worry about competition. (Se
Chapter 13).
- Chapter 13).
 RTHER DETALS
obtain further details of any of he coded items mentioned in the Editorial or Advertisement pages of this issue, please complete one or more of the attached cards entering the reference number(s) Your enquiries will be passed on to the manufacturers concerned and you can expect to hear from them irect in due course Cards posted from abroad require a stamp. These Service Cards are valid for six months from the date of publication.
Please Use Capital Letters
If you are way down on the circulation list, you may not be getting the information you require from the journal as soon as you should. Why not have your own copy?

To start a one year's subscription you may apply direct to us by using the card at the bottom of this page. You may also apply to the agent nearest to you, their address is shown below.
overseas subscription

 ailgium: Agence et Tokvoto

 Denmerk: Densk
Baldorstibution
Hen

 Qermany: W. E. Saarba
GmbH, 5 Konn 1, olierstrassa 2

 Amsiertam 1004
 Mansion Ext: Madame

Cema Rood, Bombay 1 | ran: A.D.A. 15 |
| :--- |
| Sorava, Teniran |

 Now Zoaland: Gordon \&

 Name :umilil South Africa: Contral

 Switzorland: Naville \&

 Sole 402 Bastastisse 34 ,

Postage will

SINESS REPLY SERVICE
Licence No. 12045
WIRELESS WORLD, PRODUCT REPLY SERVICE, 429 BRIGHTON ROAD, SOUTH CROYDON, SURREY CR2 9PS

\section*{

WIRELESS WORLD Wireless World, December 1979 WW 9
Pease arrange for me to receive furner detaiss of the products isted, the appropriate re
space provided. space provided

Name of Company
Adodress

Telephone Numbe

\section*{| PUBLISHER |
| :--- |
| USE ONLY |}

Position in Company

Walure or
\qquad

Wireless World: Subscription Order Form

To become a subscriber to Wireless World please complete the reverse side of this form and return it with your remittance to:

Subscription Manager,

IPC Business Press,
Oakfield House, Perrymount Road,
Haywards Heath, Sussex RH16 3DH,
England

WIRELESS WORLD. DECEMBER 1979

U.R. RETURN OF POST MAIL ORDER SERVICEE, ALSO WORLDWIDE EXPORT SERVICE

ELalx
 AUDIO TEST ENGINEERS AND TRAINEE TEST ENGINEERS

Having recently opened an additional 10,000 square feet of factory space at our Saffron Walden site, we need to augment our test staff to cater cores. The Audix product range covers the sound reinforcement and radio and T.V. broadcasting
fields. We ideally need staff experienced in audio test fields. We ideally need staff expe of digital and micro-
proced processor techniques - however, training can be provided for persons with a working understanding of electronics and with an enthusiasm for audio engineering.
Please write or telephone:

Audix Limited

Station Road, Wenden, Saffron Walden, Essex
Tel. Saffron Walden (0799) 40888

POWEFTRAN
PSI Comp 80 280. Based powerful scientific compute
Design as published in Wireless World, April-September, 1979

Included in the PSI COMP 80 scientific computer k kit is a protessionally thind in a series of articles in Wireless World really ys completel

Value Added Tax not included in prices
 XPoRT ORDERS: No Var. Postage .charged at actual cost plus 50 p .K. ORDERS. Subiect to 15% surcharge for VAT': NO charge is made tor

UK Carriage FREE

POWERTRAN COMPUTERS

(a division of POWERTRAN ELECTRONICS)
ORRTWAY INDUSTRIAL ESTATE ANDOVER HANTS SP10 3NN

ANDOVER 0264) 64455

Nevenco Ltd
WW - i15 FOR FURTHER dETAILS

ORGAN and PIANO KEYBOARDS		
		P\&P
4-Octave C-C	£32.20	
${ }^{5}$ 5-Octave $\mathrm{C}-\mathrm{C}$	${ }_{\text {E }} \times 34.50$	${ }_{\text {¢ }} \mathrm{E}_{2} 7.75$
$5-\mathrm{Octave} \mathrm{F-F}$ 6 -Octave C-C	¢36.80	${ }_{¢}^{¢ 2.75}$
DALSTON ELECTRONICS 40a Dalston Lane, Dalston Junction London, E8 2AZ Tel: 01-249 5624		

AIY MAKE-UP OR
COPY Querries
CONTACT JOHN GIBBON OR TONY FAYERS 01-261 8353

OLIVETTI PRINTER \&

 KEYBOARD type Te 300with PUNCH \& READER. Upper case ASCII with V24 Interface. 240 volt operation.

£125 each

TELETYPES KSR33

Upper case ASCI with 20MA Loop. This is a printer Keyboard. (No Punch or Reader on this model).
 £225 each

We still have large quantities

Minimum order $£ 3$ value of goods. P\&P or Carriage and VAT at 15% on total must be added to all orders.
CALLEES VERY WELCOME STRICTLY BETWEN Gam-1 pm and 2-5pm Monday to Saturday inc.
BARCLAYCARD (VISA) and ACCESS taken. Official orders welcome

NORWOOD ROAD, READING TELEPHONE NO. READING 669656
(2nd turning left past Reading Technical College in King's Road then first right - look on right for door with" "Spoked Wheei")

Number1...

AMPEX ATR-700 Now every studio can afford legen-
dary Ampeex performance and
reliability. Fully professiond reliability Fully professional
specificiotion includuing balanced
inputs $/$ outputs. Canno inputs/ outputs Cannon con nec-
iotss varabel tapespeed, sel sync.
The price will fit this The price will fit this year, sbutget.
not nexty year: Sole distribution by
ITA.

ORBAN
from USA
Dual channel multispring reverb unit. Each channel features four springs USA
tar
moother than single

122

ST-45 SPECIFICATION VERTICAL SYSTEM	TRIGGER External: $100 \mathrm{Mv}(10 \mathrm{MHz}-2 \mathrm{MHz}), 200 \mathrm{mv}(2 \mathrm{MHz}$
Semem	
	Heem
Risetime: 7 Onsec. input Impedance: $1 \mathrm{M} \Omega+22 \mathrm{PF}$ approx. (for all 	
	displar
	GENERAL
	come
ACCESSORIES	1 Olbs- 4.5 kg approx. Baox feremonditibe
ORDERS TO: SAFGAN ELECTRONICS LTD. 56 Bishops Wood, St. Johns, Woking Surrey GU21 3QB or Tel: Woking 66836	
Please send me.....ST-45. Probe	
1 endoses P / /cheque	(Goods $+15 \%$ VAT + E3.00 pqp)
Name	
Address	

RE501 Fully Programmable Stereo Generator For further information on these instruments and For further information on these Reterenics range of test equipment, please contact Danbridge (UK)

Danbridge U.K. Ltd. SHERWOOD HOUSE, HIGH STREET, DANBRIDGE CROWTHORNE, BEEKSHIRE. TELEPHONE:- (03446) 2369
TELEX:- 847782 DANBRI-G
WW - 100 FOR FURTHER DETAILS

WIRELESS WORLD, DECEMBER 1979

D ELECTRONics

 ELECTRONIC VALVES COMPARE OUR PRICES BELOW ARE A FEW EXAMPLES (VAT EXTRA)
Please contact us for quantity discounts and types not listed
above. Export enquiries welcome. All our valves are tested bove. Export enquiries wolcome. All our valves are tested and guaranteed. We supply Govern
 STOCKPORT ROAD WEST STOCKPORT ROAD WEST STOCKPORT, CHESHIRE SK6 2BP TEL: $061-4062441$

[^4]

PRICE $E 61.50+$ VAT (price includes delivent
Use the Reader Enquiry Service or write or telephone for further information.
Send cheques officicil orders to
GP INDUSTRIAL ELECTRONICS LIMITED
SKARDON WORKS, SKARDON PLACE, NORTH HILL, PLYMOUTH
WW - 047 FOR FURTHER DETALS

Royal Horticultural Halls ElvertonStreet Westminster London SW1
December 4-8th 1979
(10.00a.m. to 6.00p.m.)

Admission £1 (Students 70p)
Breadboard '79
Breadboard is more than just bits and pieces. True there are components there in their thousands (and at bargain prices, too, in
many cases). But there are computers (minis, micros, Apple II, North Star, PET, Horizon, Cromencol demonstrations of 6 -level chess, printers, v.d.t.u.s, monitors and applications software. There
are kits, games, test equipment. Radio Station $\$ 22$ is broadcasting throughout, an electronic organ is being built from scratch. You can
get weather details direct from Tiros M and examine your own voice get weather
waveform.
All this and more you can see, buy and build at your leisure -
Breadboard's a challenge to the true professional.

ROHDE \& SCHWARZ TV Demodulator. AMF. 55-90MHz Selective UHF V/Meter. Bands 4 \& 5. USVF Selectomat Voltmeter USWV. $£ 450$. UHF Sig. Gen type SDR 0.3-1 GHz. $£ 750$. UHF Signal Generator SCH Polyskop SWOB I. $£ 450$ Videoskop SWOF with sideband adapter - Video Test Signal Generator type SPF UHF Sig. Gen. type SCR. $1-1.9 \mathrm{GHz}$.	P. F. RALFE ELECTRONICS 10 CHAPEL STREET, LONDON, NW1 TEL: 01-723 8753	DC POWER SUPPLIES *APT 10459/8 12-14V. 5 Amps. £25. (+£1 Pp). $10459 / 8.24 \mathrm{~V} .5 \mathrm{Amps}$. $£ 25$. ($+£ 1 \mathrm{pp}$). APT Your voltage requirements from 6 V to 36V. @ 5 Amps. £25. (+£1 pp) Mullard Dual supplies. Brand new with handbook. Pos \& Neg $12 V$ at A and 0.4 A resp. Dims $9 \times 4 \times 5$ in. $\mathbf{E 1 0}$. (+ E1 pp). 5 F . 4 A .
MARCONI TF2360R TV Transmitter Sideband Analyser TM6936R 1101 RC oscillators $£ 65$. TF 1099 20MHz sweep generato TF1041B Valve Voltmeter $£ 65$. TF1 152A/ 1 . Power meter. $\mathbf{2 5 W}$. 500 MHz . $£ 75$. TF1020A Power Meter. 10 W .250 MHz . $£ 85$. TF1400 Pulse Generator $£ 65$. TF1066 AM/FM Signal Generator. $£ 550$. TF $801 \mathrm{~B} / 3$ S Signal Generator $£ 175$.		
	AIRMEC Display oscilloscope. 4 beam. AIRMEC 314 A Voltmeter. 300 mV (FSD) 300 V BRANDENBURG EHT Generator. 50 KV . 1 mA . DERRITRON 1 KW Power Amplifier with control equipment for vibration testing etc. GAUMONT KALEE Flutter Meter GERTSCH Frequency Meter and Dev Meter. $20-1000 \mathrm{MHz}$ £350. HEWLETT PACKARD 302A Wave Analyser	
BECKMAN TURNS COUNTER DIALS Miniature type (22 mm diam.). Counting up to 15 turn "Helipots." Brand new with mounting instructions. Only $£ 2.50$ each. Level Meter $0.2-1600 \mathrm{KHz}$ Level Oscillator $0.2-1600 \mathrm{KHz}$ Level Transmiency Level M Carrier Frequency Level Meter	BOONTON Model 80 Sig. Gen. $2-400 \mathrm{MHz} £ 95$ 100 mHz Digital Frequency Counter TELETYPE KSR. One remaining SOLARTRON LM 142.2 . DVM. 6 ranges to 1 KV MUIRHEAD type $\mathrm{MHz}_{\mathrm{I}} £ 185$.	MODULATION METERS AIRMEC $2103-300 \mathrm{MHz}$. AM /FM RADIOMETER AFM / 1 3. $5-320 \mathrm{MHz}$. AM /FM RACAL $4093-600 \mathrm{MHz}$. AM /FM.
	RADIOMETER AFM/1. Dev/Mod Meter. $3.5-320 \mathrm{MHz}$. $£ 185$. TAYLOR Model 62 A AM/FM Signal Generators. $\mathbf{\varepsilon 8 5}$. WEINSHEL Power supply Modulator type MO3.	'CENTAUR' INSTRUMENT
	BRUEL \& KJOER type 1504 Deviation Bridge BRUEL \& KJOER Vibration equipment 1018 BRUEL \& KJOER Frequency analyser 2105 BRUEL \& KJOER Microphone amplifier $2603 £ 195$.	
advance constant voltage TRANSFORMERS input 190-260V AC. Output constant		Made by Rotron Holland. These are very high quality, quiet running fans, specially designed
	BRUEL \& KJOER Microphone amplifier 2603 £195. BRUEL \& KJOER Type 3301 Automatic frequency response recorder 200 Hz . $£ 750$.	for the cooling of all types of electronic equip-ment. Measures $4.5 \times 4.5 \times 1.5$ in. 115 VAC . 11 Watts. The list price of these is over $£ 10$ each. Also 230 V . AC available. 15 V . $£ 4.50$. (postage 25p). 230V $£ 5$.
	recorder $200 \mathrm{~Hz} £ 750$. MUKRHEAD-PA5 scope with plug-ins types CA (2 off), 21, 22 TEKTRON $\times 555$ scope with plug	
PYE RESISTANCE BOXES 5 decade resistance boxes measuring from 11.111 ohm to 0.001 ohm	TEKTRONIX 515 A Oscilloscope TEKTRONIX 545 main frames. $£ 210$. Choice of plug-in units extra	
LABORATORY OVENS. - Gallenkamp. 3 c ft. £145. Also Morgan Grundy 1 cu. ft. $£ 55$. 20-WAY JACK SOCKET STRIPS. 3 pole type with two normally closed contacts elugs for each $(+25 p$ pp). Type 316 three pole plugs above - 20p ea. (pp free).		Finger guards for above - 50p each. Also small type Papst fans as above measuring (PP 25p). RS price for all these fans are now around $£ 12.50$ each!!

MARCONIINSTS

Unless otherwise stated all equipment offered in the advertisement is refurbished and in the case of Test Equipment also calibrated. Test equipment is guaranteed for 12 months; computer peripherals for 3 months.	Add 15\% VAT to ALL PRICES Carriage and
Hours of Business: 9 a.m.-5 p.m., Mon.-Fri. Closed lunch 1-2 p.m.	Packing charge extra on all items unless otherwise
A copy of our trading conditions is available on request.	stated.

Electronic Brokers
 49/53 Pancras RoadLondonNW12QB Tel:01-837 7781. Telex 298694

 Spectrum Analyser System
1414 Display
8552 A IF Section

total price $£ 5,250$
BRIDGES
GENERAL RADIO
Immitance Bridge 1607A £750

MARCONI INSTS.
Univ. Bridge TF1313A (0.1%)
Univ. Bridge TF 1313A (0.1% \%)

waynekerr

CALIBRATION
EQUIPMENT
NEWLETT PACKARD
Voltage Source \& Differential
VC Voltage Source \& $8 C 750$
DC 70
DC Voltage Source \& ACCDC
Diff. Voltmeter 741 A
E975 FLUKE
833 AB

TEKTRONIX
Tirme Mark Generator $184 £ 275$
Time Mark Generator 2901
5nS Puise Generator $2101 \mathbf{£ 5 5 0}$
Pulse Generator 109
$\mathbf{E 3 2 0}$

SOUND LEVEL METERS - BRUEL \& KJAER GENERAL RADIO Ponklradio 2500 1983
1933 \& 1935 Portable E S Ound Level M Meter with data cassette
recorder
Portable Sound Level Meter
E2.

DIGITAL COUNTERS	OSCILLOSCOPE
gould advance	PROBES
500 MHz Counter TC1 $5+15 \mathrm{P} 1$	EL
80 MHz Counter TC17 or TC17A	
....... £195	
	X1×10 Probe Kit EB95
${ }^{125 \mathrm{MHz}}$ Multi-Function Count	
910A-01 £285	MISCELLANEOUS
Multi-Function Cou	
1910A	
520 MHz	Multimeter EA1
Counter 1920A-06 £490	
125 MHz Multi-Function Count	Multimeter Model $8 \mathrm{Mk} \mathrm{V}^{\text {chen }}$
	BIOMATIO
125 MHz Univ. Timer Counte	16 Channel Logic Analyser 1650
1953A-15-16 $\mathbf{E 8}^{\text {¢ }}$	
80MHz Timer Counter PM6612 $\ldots 405$	V
Hz Timer Counter PM 6615	BR
80мНz Frea Counter PM6661	DC Voltage Calibrator 126
${ }_{6}^{66185}$	
10	
520 MHz Automatic Fre $£ 300$
Sunters PM6664	
MHz Counter PM	LF Wave Analyser $1771{ }^{\text {c }}$ ¢375
	AM/FM Mod. Meter 178
${ }^{\text {80 }}$ MHz 9 digit Univ. Counter	
$£ 350$	LF Distortion Meter 1765 £250
	Complex Rati
RACAL	
SYSTRON DONNE 50 MHz Counter Tim	Vibration Analyser 1911A
LF Freq. Counter 6220 . $£ 160$	-
	Camera 195A ¢ ¢295
DIGITAL VOLT	Camera 198A £200
digital voltme	True R.M. S. Voltmeter 3400A
ULTIMETERS £505
advance	Microwave Freq. Converter
True R.M.S. Voltmeter DRM6	${ }^{25908}$.
.... £150	
datron	
51/2d digit D.M.M. 1051 £995	MARCONINSTRUMENTS
fluke	AF Transmission Test Set
A-01	MF Transmission Test Set
	TF2333 6600
41/2 digit D.M.M: 8600A-01	Quantization Distortion Tester
. $£ 3$	
OOOA D.M.M. £199	
8800A D.M.M. $51 / 2$ digit $£ 599$	£250
HEWLETT PACKARD	Q meter system TF $1245 / 46 / 47$
$51 / 2$ digit D.M.M. 3470	
34740A £295	Divider TF2422 $£ 75$
	-Tie Sq. Puise \& Bar Generator
4 digit D.M.M. PM 2424 £300	TF2905te $£ 450$
41/2 digit DC. D.V.M. PM 2443	Grey Scale Generator TF2909
	E600
311/2digit D.M.M. PM 2513 £90	AM/FM Mod. Meter TF2300A
31/2digit D.M.M. PM2513A	¢550
.M. PM 2514	Mobile Radio Test Set TF2950/
	50
	25
¢	
M.M. PM 25	D.F.M. TF2331
D.M.M. PM2522A	W
SCHLUMBERGER-	PHILIPS
SOLARTRON	enerator PM5715 £575
$51 / 2$ digit Digital Multimeter	硡
$4{ }_{4}^{1 / 24}$ digit D.M.M. 7050	
D.M.M. (Microprocessor C	Pattern Generator PM550
proce	

OSCILLOSCOPES

ADVANE
Storage Scope OS $2200 \quad £ 74$
COSSOR $\begin{array}{lll}\text { Storage Scope OS2200 } \\ \text { Cossor } \\ \text { 35MHz Dual Trace CDU } & 150 \\ \text { 3745 }\end{array}$

 75MHz Dual Trace $1707 \mathrm{~B} \notin 925$
T.D.R. System $140 \mathrm{~A}+1415 \mathrm{~A}$
T.D.R. System $140 \mathrm{El}+1415 \mathrm{~A}$
 PHILIPS
5 MHz
PM
5 MHz Battery Miniscope
PM3010
15 MHz Portable Dual $\neq 325$
 PM 3211
25MH Portabie Dual Trace
PM 3212

 100MHz Portable Dual Trace
PM3262
 TEKTRONIX
scope 326 atery Mini-
24 MHz Dual Trace 545 E 900 50 MHz Dual Trace $547+1 \mathrm{~A} 1$ 100MHz Dual Trace 465 150 MHz Dual Trace $45{ }^{〔}$ 500 MHz Dual Trace 7904,
$7 \mathrm{~A} 26,7 \mathrm{~A} 19,7 \mathrm{~A} 21$ 7B92 7A26, 7A19, 7A21, 7B92, 6,350
25 MHz Split Screen Storage Largope stocks of piug ins for 500
series mainframes at new low prices. Details on reques.
TELEQUIPMENT
10 MHz Single Trace P7CRT
S54AR (Mint)
$\mathbf{E 1 7 5}$
 RECORDERS
AMPEX
FM/DR Tape Recorder PR2200
$\mathbf{E 6 , 5 0 0}$ BRUSH $\begin{aligned} & \text { Multipoint } 8 \text { Channel Chart } \\ & \text { M }\end{aligned}$
 XTY Plotter 7035
PHLLIPS
PHgle Channel Chart Recorder
Sing
PM8110
P225, PM811
RACAL
Rt
R
6in hour Recorder 500uA 18 SHANDON SOUTHERN watanabe
6 Channel Chart Recorder
MC641 YoKOGAWA
2 Channel Chart Recorder 3047

No. 1 in Second User Minis \& Peripherals

HAZELTINE H-2000A NOW

TEXAS 733ASR

BALL MIRATEL
MONITOR

DEC PDP11/04 SPECIAL PURCHASE

GE TERMINET 1200

NEW ASCII KEYBOARDS

DEC EQUIPMENT

 TAPE

Mail order
il
858.65

 ${ }_{8}{ }^{\text {E4.25 }} \quad$ E5.46

Electronic Brokers

WIRELESS WORLD, DECEMBER 1979
find out about

the New SEMICON

INTERNATIONAL

 semiconductor INDEXESAccepted as the finest books of their kind. Worldwide usage, for testing and primary selection purposes. Maximum ratings and major characteristics of a very 25,000 entries in each volume including USA, European and Japanese sources. Each single line entry includes references from which terminations, possible substitutes and alternative manufacturers may be obtained.
The loose-leaf binder form allows easy updating by our subscriber up-date service - free for the first year.

STEREO DISC AMPLIFIER 3

A reference amplifier for disc monitoring and trans

Dominus p.o. box 1 .
Cranleigh, Surrey GU6 7JF. Tel. 048666477

RADIO SHACK LTD for DRAKE

RADIO SHACK LTD

For Communi
Trio testgear:

drake \approx SALES \approx SERVICE

RADIO SHACK LTD

188 BROADHURST GARDENS, LONDON NW6 3AY Giro Account No. 588 7151.T Tolephone: 017624 7 T74
Cables: Redio Shack, London, NWE. Tolox: 23718

REFIDTHENEWNIEWS BEFOREIT BECOMESOLDIEWS

Company news changes fast in the electronics industry - but it can't outpace Electronics Weekly. Mergers, new projects, major policy changes, the battles for markets ... the whole electronics business scene is covered week by week; and interviews with leading industrialists provide insights into the way he top companies are developing their business. You couldn't have a more valuable briefing on the company situation - but its value obviously
and are the last to know about developmeekly late vitally affect your business and your customers. For only 15 p a week you could see Electronics Weekly ahead of everyone. Fill in and post this coupon... and news about your industry will always be new!

To: Subscription Department, IPC Business Press Ltd.,

 Oakfield House, Perrymmount Road, Haywards Heath, SussexPlease send me

${ }^{-1}$

Electronics Weekly

If we told you the best way to talk to your staff... what would you say? We can tell you how to talk to your secretary, your accounts clerk, your foreman - or to all of them at once. We
can now offer you the first really practical and economical duplex intercom system-for all your communication needs.

- The first 100% British designed and manufactured duplex intercom system
- Employs the smallest known control unit
- Offers paging facility as standard
- Conference facility up to 8 stations- also standard

Easier to install-More standard facilities-And less expensive than most other systems

B0\% Barkway Electronics Ltd, Barkway, Royston, Herts SG8 8EE Telephone Barkway (0763 84) 666 Telex 817651. Barcom G

carbon film RESISTORS
PRICES REDUCED. SEND FOR DETAILS NOW

SCIENCE

FACT
The invention of the silicon chip by Texas Instruments, turned science fiftion into science act overright' bat wase il 196 ,
only now is the full potential of the 'chip' being realised. Texas Instruments offer you 14 years of extensive research and development in the form of data and reference books that
will enable you to get the very best from their micro-miracle. will enable you to get the very best from their micro-miracle.
Whether it's your business or hobby, anyone interested in micro-technology will find these books invaluable.

talk to us first Texas Instruments Ltd, Supply Division,
MS21, Manton Lane, Bedford Tel: 023467466 Slough: 186 High Street, Slough, Berks. Tel: 075370531 Manchester: Knightsbridge Mall, Arndale Centre, Manchester: Knightsbidge Mall,
Market Street, Manchester. Tel: 061-832 6238

J. L. Linsley-Hood High Quality Cassette Recorders

COMPUTER APPRECIATION

86 High Street, Bletchingley, Redhill, Surrey RH1 4PA. Tel. Godstone (0883) 843221

NEW Moder home studycourses inelectronics.

Complete Self-sudy training in:

1) Basic practical electronics - curcuit diagram masters - building oscilloscope and other test gear.
2) Training for Radio Amateur Licence. 3) Training for City \& Guilds and other professional examinations.
a) Servicing and maintenance of Radio, T.V. and other electronic equipment.
b) Digital electronic and Computer technology.

NAME
ADDRESS
(Block caps-please).
Specialists in electronic training Established over 40 years.

MAIL ORDER PROTECTION SCHEME
SCHEME
(Limited Liability)

EEGUN TV TUBES
with EDICRON $\begin{aligned} & \text { ELEETRON } \\ & \text { ASSEMBUILSS }\end{aligned}$ WRELESS WORLD INITOTHE 20 ESMIT:

Into the '80s with Wireless World Special issue appearing January 1980

The past ten years, as we all know, have shown quite remarkable developments in the technology of the many fields covered by Wireless World-electronics, radio, communications, television and audio, to name but a few.
What about the next decade? It's not so much a question of whether it will be as dramatic as the last, but how much more so. Indeed everybody seems to be looking towards the '80s with bated breath and excited anticipation. We on Wireless World feel much the same, and to make our own distinctive contribution to the scene will be publishing a special issue "Into the '80s" in January 1980.
In this, experts from industry and related fields will be predicting and discussing the changes we will all see - changes of course in which your company will be playing a major role. Listed below are some of the subjects to be covered.

Radio communications
Broadcasting
Audio
Consumer electronics
Microelectronics
Radio navigation and radar
Measuring instruments

In addition to our normally high readership, we know that an even greater interest will be created by this issue, so for that month alone an even bigger print order is being prepared.
Advertise with us on the threshold of the 'eighties and tell our discerning and forward looking readers what you are offering in the next ten years.

Join the Successful Team

has a vacancy for an

ELECTRONIC

 TECHNICIAN
AT CHALGROVE AIRFIELD, OXFORD

The successful applicant will be required to assist small team, on commissioning and operation of telemetry and號

OUALIFICATIONS - Ability to make prototype units from rough drawings and test to specifications using standard test equipment. Knowledge and experience of U.H.F. Trans/Recs., tape recorders and logic systems. (Gained as a radio amateur perhaps)
Salary range $£ 5500-£ 5700$ per annum. Weekly paid 40-hour week. 22 days' holiday per year, non contributory pension scheme after five years
Enquiries to: Mr. G. B. Thompson, Martin-Baker (Eng) Co. Ltd., Chalgrove Airfield, Oxford OX9

Our equipment can be found in Radio and TV studios and transmitting stations across the world, and in many stations throughout the U.K.
Our $£ 8$ million share of the recently awarded IBA fourth channel transmitter contract, and our continuing success in the transmitter field worldwide, means we now have attractive openings for transmitter development engineers at all levels. We're looking for people with the ability to take responsibility for all aspects of design in T.V., F.M. and A.M. sound broadcast transmitters.

You should be qualified to at least H.N.D. level with a minimum of around two years development experience - but the most important qualities are the interest and enthusiasm to be part of this successul team.
Telephone our Chief Engineer to talk about the job on Friday afternoons (reversing charges if necessary), or write for an application form to the Personnel Department.

UNIVERSITY OF
KEELE Department of
Physics
ELECTRONICS Technician required for teaching
and research laboratories.
Appointment at Grade 5 for and research laboratories.
Appoitment at Grade 5 for
which the salary scale is $£ 3700$ -
 £4320 ($£ 382$)
April 1 st, 1980).
Application Application forms and further
particulars vavalable from the
Protessor of Physics, The Univer-
 sity, Keele, Stafts., ST S5 5BG, to
whom apolications should be
returned by November 26th,

LECTURER

Engineering Training Department Wood Norton, Evesham, Worcestershire The duties will include the training of BBC Engineers and Technicians in the principles and practice of broadcast engineering.
Lecturers in the Department are required to develop specialist knowledge Lecturers in the Department are required to develop specialist knowledge
and skills within the broadcasting field and to maintain close contact with relevant departments of the BBC.
They organise and present information to students having a wide range of They organise and present information to students having a wide range of
ages, backgrounds, bilities and attitudes using modern educactional methods. The successful candidate, male or female, should have a good degree in a The successtul candidate, male or temale, should have a good degree in a
relevant subject such as Electronics or Communiations, and uppo-date relevant subject such as Electronics or Communications, and up.to-date
knowledge and experience of training techniques. Direct experience of knowdeage and experience of training lechniques. Direct
The post is based at the Corporation's Engineering Training Centre near Evesham, Worcestershire and work away from base is necessary occasionally. Re-location expenses for householders will be considered.
The salary scale, depending on experience, would initially be between $£ 5955$ and $£ 7085$ per annum, increasing annually, subject to satisfactory For more information and an application form, please write to:
Head of Training Section (Engineering), BBC, Wood Norton Hall, Evesham, Worcestershire quoting reference 79.E.2492/WW. Closing date for completed application forms is: 14 days after publication.

BBG

SENIOR ENGINEER TECHNICAL SERVICES
 UP TO £6,700 + CAR

Neve Electronics International Ltd. are the leading suppliers of professional sound control
systems for the world's music recording, broadcast and film industries.
The company based at Melbourn, Cambridgeshire, offers an attractive working environment and
excellent condition of employment.
The position is a senior one within the Technical Service Dept. and candidates should hold a
relevant academic qualification or be able to demonstrate a very high level of ability, together with relevant academic qualification or be able to demonstrate a very high level of ability, together with
experience in analogue and digital equipment.
Reporting to the Head of Service the successful candidate will be responsible for commissioning
and providing technical services for the company's products world wide and will also act as the
and providing technical services for the company's products world wide and will also act as the
deputy for the head of service.
The salary will reflect the importance of the job and the calibre of the person likely to fill it
effectively. In addition the situation affords the opportunity to join a technically interesting and effectively. In addition
progressive company. Extensive re-location assistance will be offered where appropriate together progressive company. Extensive er-lo
with the usual employment benefits.
Please write with career details to:
NEVE ELECTRONICS
INTERNATIONAL LTD.
Cambridge House, Melbourn, Royston, Herts. SG8
Tel. Royston (0763) 60776
electronic technicians

 Salary range offered will depend
upon age, qualifications and ex-
perience. perience.
The Authority, in association with
its various functions, operate a its sarious functions, operate a
wide range of instrumentation
and associated telemetry and Wide range of instrumentation
and asociated telemery and
control systems. Technicians are control systems. Technicians are
required to carry out mainte-
nance, repair and commissioning nance, repair and commissioning
work on installations throughout work on ins.
the county.
Candidates who should be
qualified at ONC/HNC level qualified at ONC/HNC level
should have had at least two
years' relevant experience in
 They should possess a good
working knowledge of modern digital electronics. A basic knowledge of computers and
programming would be an adprogramm
vantage.
Persons appointed will be based
at Bridgwater and should hold a Persons appointed wilr be based
at Bridgwater and should hold a a
curent
allowaniving licence. Mileage current driving licence. Mileage
allowance payable for use of own
vehicle. Applications to Division Per-
somnel Officer, Wessex Water Authority, P.O. Box 9, King
Square, Bridgwater. TeI. Squara,
57333.

WESSEX WATER

(CA CAPITAL

FREE JOBS LIST
FIELD SERVICE ENGINEERS BASIC SALARIES TO

$$
8,000+C A R
$$

30 Windmill Street, London, w1

Appointments

Blectronics Appointments

a division of Graduate AppointmentsLtd 7, Princes Street, London W1R 7RB Tel: 01-6297262

ELECTRONICS ENGINEERS

 automated engine test bed systems, including the application of
microprocessors to engine control.
Applicants should preferably have a Bsc in Electronics. Physics or a
related subiect with a few years' experience in either electronics or rele ated subiect w.
instumenation.
The appointments offer competitive salary levels and excellent tringe
benefits indluding

Apoly in writing or relephone Mr. R. Barow, Personnel Manager,
Ricardo Consuting Engineers Ltot; Bridge Works, Shoreham-by-Sea,

ELECTRONIC TECHNICIAN

REES INSTRUMENTS LTD:
have vacancies for Electronic Technician Engineers at their Old
Woking headquarters. The successful applicant will be working as
Wor Woking headquarters. Tine successful applicant will be working as
part of a small progressive team engaged on specialist CCTV system part of a smal
production.
The duties will include test and fault diagnosis on sub-miniature CCTV. Whilst academic qualifications are desirable, applicants with ex-
perience in the field of $T V$ will also be considered. Company offers a Whilst academic qualifications are desirable, a
perience in the field of TV will also be considered.
$371 / 2$ hour week with four weeks annual holiday.

If you are interested, telephone Woking 62221, ext. 229 for an
Mrs. F. Griffith-Jones
REES INSTRUMENTS LTD.
Westminster House, High Street Old Woking, Surrey

Appointments \qquad

@PIONEER Product Evaluation Engineer

 /ver,Bucks.Our Client, Pioneer High Fidelity (G.B.) Limited is engaged in the importation and marketing of their highly successful and top quality range of Hi-Fi equip Evaluation Engineer to work in their head office in lver, Buckinghamshire. If you are aged over 28 , have a univer sity degree or equivalent qualification in electronics and have five years' experience on the technical side of high quality sound reproduction and radio equipment, preferably $\mathrm{Hi}-\mathrm{Fi}$, we would like to hear from you
You should be able to tackle advanced technical problems and be confident that you can contribute to an already

Electronics c.f8,000p.a.
high performance product range. You will have the most up-to-date and sophisticated test equipment to assist you in this.
Pioneer will negotiate a salary of around $£ 8,000$ p.a. and will provide the fringe benefits normally associated with a progressive company. In appropriate relocation expenses
Please write stating age, current salary and how you meet our Client's require ments quoting reference PE/4055/WW on both letter and envelope. Men and women are invited to apply. No information will be disclosed to our Client without permission. Baylis House
Stoke Poges La Stoke Poges Lane
Slough SL1 3PF

PHILIPS MEDICALSYSTEMS require
ENGINEERS

For Diagnostic Medical Apparatus

We require several suitably qualified

echnical personnel, to train in our
headquarters in Eindhoven, Netherlands, as Installation and Service Engineers t
install and maintain the very latest in advanced diagnostic apparatus.
After the comprehensive training is completed, you will be offered a contract with us somewhere outside the U.K. for a period of at least two years.
We feel that you should be twenty years old, preferably single, and be in possession of an ONC in electronics, C\&G Technician Certificate or equivalent Experience of the medical field is
positions.
If you feel that you have the qualifications to take this opportunity of joining a major Company in this field, then you will be amply rewarded with a job that is both sa
Although Philips Eindhoven would the employer, please contact initially: Mr. O. J. Skinner, Regional Co-ordinator, Philips Medical Systems, Kelvin House, 63/75 Glenthorne Road, Hammersmith
London W6 OLJ. Tel. No. 01-741 1666.

ELECTRONICS TEST ENGINEERS

Staying true to type is our Were Linotype-Paul. world leaders in the design.
development and mark development and marketing
of an advanced range of photo-typesetting equipment Our highly sophisticated computer-controlled
machines are revolutionisin machines are revolutionising
the graphics industry and setting increasingly higher standards of type production
Keeping our systems on the Keeding our systems on the
leading edge of technology is leading edge of technology
our aim -and to back us in our efforts. we need more skilled electronics test
engineers. engineers.
If you have 2-3 years experience of testing complex

We need your skills
equivalent. you could build a
great career with us A to stay true to type knowledge of analogue circuitry would be an added The workis deeply intantesting The work's deeply interesting
and stimulating -and never routine. Staft facilities includ superb working condititions
sick pay scheme sick pay scheene
subsidised canteen and
relocation expenses wher And salary structures are And salary structures are
highty competitive
Posts are open to both men digital equipment. ideally reinforced by ONC or and women. For full details. write or telephone to the
Personnel Department. Linotype-Paul Limited Personnel Department. Linotype-Paul Limited.
Runnings Road. Cheltenham. Tel: Cheltenham 45001. Linotype-Paul

Some of your best work will be thrown away. None of it will be wasted.

Engineers at UEL can be expected to work on a series of
projects as diverse as can be projects as
imagined. inagined. As laaders in the manufacture of communic systems. we ' 'e recently
pioneered a unique railw pioneeredicatingue ralways
communicating system. And since we've always been European leaders in the manufacture of Sonobuoys. we
must warn you that some of must warn you that some of
your best work will be throw your best work win be thro provide a vital contribution to We foster an unrivalled atmosphere of creative.
enthusiasicic and inspired enthusiasuc and inspired
engineering in which a good idea is applied in the most unlikely capacity. If vou have
the kind of talent which the kind of talent which
responds to this sort of environ-
ment. we have several position ment. We have several positlons
which are bound to interest you.

Senior Electronic Engineers and Engineers £5500-£7500 Aged 22-45 $\mathrm{HNC/HND}$ or Degree in Electronics,
preferably a Chartered Engineer. to preferably a Chartered Engineer
design analogue systems and design analogue systems and
circuits. technical staff control and infrequent travel to trials locations in the UK and abroad. Preference will be given to

Transducer

 Engineer £4500-£7500 High Wycombe To contribute to the design. development and trials of electroacoustic underwater transducerss in connection with several interestingprojects at our transducer laboratory projects at our transducer laborat physics or electronics with ideally
industrial development establish Development Technicians £3500-£4500 Aged 25-45 C \& G Electronic/Radio/TV/Telecomm Certificate up to Part 1 or intermediate level desirable. Duties to include building and testing prototypes,
developing analogue circuits and developing analogue circuits and assisting development engineers.
For all the above vacancies we offer highly competitive salaries. generou benefits and stimulatin
For more information and an early interview, please telephone Gavin Rendill on

powiry
 U=E

Appointments

Site Survey Engineer

Radio Communication Equipment Excellent Salary + Car
Multitone design and manufacture a world beating range of radio communication equipment, we're now beginning an exciting expansion programme,
consolidate our market position in the 1980^{\prime} 's.

In line with these plans, we're now looking to appoint an experienced Site SUurvey Engineer to undertake radio coverage surveys in the UK and occasionally overseas. This at a time.

Your main area of involvement will be the setting up or small transmitting stations and measuring the coverage achieved. This will occasionally entail climbing antenna masts, normally not more than 100 ft ., and using a pump-up antenna mast where existing facilities do not exist.

You must therefore be qualified to at least City \& Guilds
For this responsible and demanding post, we offer an
For this responsible and demanding post, we offer an includes a company car, pension plan and free life assurance. Our general attitude to business ensures that promotion prospects are both genuine and progressive. For more information, write to or telephone: The Personnel Department,
Multitone Electric C Co. Ltd., Tel.: $01-2537611 \mathrm{Cl}$

We are a German group of companies which during the past 10 years have built up a reputation in banking, government and industry in the field of computer controlled Buildings. Development and execution of complete systems is done by us.
For our Data Processing Division reporting directly to the management we are looking for the

LEADING ANALYSER SYSTEMS ENGINEER AND OPERATORS

Qualification for these attractive positions are several years' experience in processing, preferably with DEC PDP- 11 Computers and with calculation of hardware and sing, preferably with DEC PDP-11 Computers and with calculation of hardourd be an advantage.

Heyestrasse 35, 4000 Duesseldorf 12

royal college of art A TELEVISION TECHNICIAN | is required in the School of Film and |
| :--- |
| TTelevisison to assist in the daily opera- | tion and maintenance of collur televevi

sion sudio
siond mobile equipment A sion studio and mobile equivment:
sound knowlegge of colour television systems is essential and some ex
perience with studio equipmen

 Interested applicants should write
giving full details of previous ex giving full details of previous ex
perience, etc. to: Assistant Regis.

AUDIO VISUAL AIDS TECHNICIANS

E5,034-E5,457 por annum
Two experienced Technicians are re-
quired by the Croydo f fducation
quince
 cluding TV receivers in schools. Commencing salary in the scale will
bemecording to qualification and
experience. experience.
in approp In approppriate cases assistance
towards emeval and lodging ex-
oenses will be paid towards remo val and
penses will be paid. croydon Aply in writing, giving details of age
qualifications, present

 Centre. Princess
revy
rup
Superintend
Superintende
teloenhonum
turnere details.

ELECTRONICS TECHNICIAN

$$
\begin{aligned}
& \text { Vacancy with established Sound } \\
& \text { and lighting Company in West } \\
& \text { London. Some experience essent } \\
& \text { tial, but must be willing to work. } \\
& \text { and learn, on oposers, bal } \\
& \text { lerinas or cowbovs need apply. } \\
& \text { PPhone Paul } 01-579 \mathbf{2 5 3 5}
\end{aligned}
$$

Radio Technicians

Work in Communications R\&D and add to your skills

At the Government Communications Headquarters we
carry out research and development in radio communications and their security, including related
computer applications. under investigation, including long-range radio, satellite, microwave and telephony

Your job as a Radio Technician will concern you in developing, constructing, installing, commissioning, testing, and maintaining our equipment. In performing
these tasks you will become familiar with a wide range of processing equipment in the audio to microwave range, involving modern logic techniques, microprocessors, and computer systems. Such work will take you to the frontie
of technology on a broad front and widen your area of of technology on a broad front and widen your area of
expertise - positive career assets whatever the future expertise - positive laceer assets wheld of digital
brings. In the rapidy expanding fiel
communications, valuable experience in modern logic and communications, valuable experien
software techniques will be gained.

Training is comprehensive: special courses, both in-house and with manufacturers, will develop particular aspects of your knowledge and you will be encouraged to tak

You could travel - we are based in Cheltenham, but we have other centres in the UK, most of which, like Cheltenham, are situated in environmentally atractive
locations. All our centres require resident Radio Technicians and can call for others to make working visits There will also be some opportunities for short trips

You should be at least 19 years of age, hold or expect to obtain shortly the City and Guilds Telecommunications Technician Certificate Part I (Intermediate), or its equivalent, and have a sound knowledge of the principles
of telecommunications and radio, together with experience of maintenance and the use of test equipment.
If you are, or have been in HM Forces your Service trade If you are, or have been in HM Forces your Service
may allow us to dispense with the need for formal may allow us
qualifications
Pay scales for Radio Technicians start at $£ 3900$ per annum, rising to $£ 5530$, and promotion will put you on ane road to posts carrying substantially more; there are
also opportunities for overtime and on-call work, paying also opportu
good rates.

Get full details from our Recruitment Officer, Robby Robinson, on Cheltenham (0242) 21491, Ext 2269, or write to him at GCHO, Oakley, Priors
Road, Cheltenham, Glos GL52 5AJ. will invite suitable applicants (expenses paid)
for interview at Cheltenham.

TOP JOBS IN ELECTRONICS Posts in Computers, Medical,
Comms, etc. ONC to Ph.D. Free Phone or write BUREAUTECH PhYe
AGY SELVAGE LANE,
LONDON, NW7. $01-959$ LONDON, NW7. 01-959
3517. industrial experience. The successful applicant will be able
one of the fields of Industrial Control, Power or Electronics.
The post terminates on 30 August, 1980.
Salary scale $£ 6,597-£ 8,253$, point of entry depending on previous
A
forms.and further particulars are available fro
Nene College, Moulton Park, Northampton NN2 7 AL

Appointrests
WIRELESS WORLD. DECEMBER 1979

Iansdowne

눈웅
 ANDRADAR ENGINEER DUNSFOLD AERODROME

This is a worthwhile position for a man or a woman
wishing to strengthen a small team responsible for servicing and maintaining air traffic radio/radar
installations. installations.
Applicants should have a minimum of 5 years' current air traftic radi
experience.
We will pay you an attractive salary and facilities include a subsidised Canteen and an active Sports and
Social Elub. Social Elub.
Please write or telephone quoting $\mathrm{WW} / 70$. to: The Personnel Officer, British Aerospace,
Aircraft Group, Kingston - Brough Division, Aircraft Group, Kingston- Brough
Dunstold Aerodrome. Nr. Godalining,
Surrey. Telephone: Cranleigh 2121

Qur client, a maior $U K$ e ectronics compan involved in providing a range of services to the sil industry TELECOMMUNICATIONS ENGINEER (Aberdeen) $£ 10,000$ p.a
Working on a rota system of 2 weeks offshore/2 week field break, maintaining vital offshore communication systems, on equipment ranging from hand-held port
ables to tropospheric scatter. This challenging position ables to tropospheric scatter. This challengilg position
demands a high degree of technical ability coupled with self-motivation. Preference will be given to applicants with HNC qualifications (or Forces
RADIO TECHNICIANS (Aberdeen) Average earnings in excess of $£ 8,500$ p.a. plus:-

- Generous field break allowance for offshore work -4 weeks holiday p.a.
The work involves installation and maintenance of wider range of marine radio equipment. Applicants must be capable of operating on their own in
demanding industry where the rewards are high fo nitiative and hard work.
PROJECT ENGINEER (Great Yarmouth) Involving experience of a wide range of com plannin at Head Office in East Anglia, and work in both offshore and onshore locations in the U.K. and overseas. Excellent salary and company benefits exist, alon with good oppor ad cancement. Assistance
positions.

Applications in confidence to:
Dept. 14E, BRJ APPOINTMENTS
Dept. 14E, BRJ APPOINTMENTS,
26 PARK PLACE, STEVENAGE SG1 1DF.

Laboratory

aency Standards Laboratory equency Laboratory , pair Laboratory Physical Laborator

UNIVERSITY OF CAMBRIDGE Department of Biochemistry
SENIOR ELECTRONICS TECHNICIAN
ELECTRONICS TECHNICIAN
Good experience in electronics essential for senior post.
Minimum qualifications ONC in electronics or City \& Guilds.
Technician post up to $£ 3958$. Senior post salary up to $£ 4456$ per annum
10w. (9817)

Telephone for an application form, quoting
he relevant reference number, to Gordon the relevant reference number, to Lorited,
Newtonntansdowne Recruitment Limited,
Design House, Th Mall, London W5 5LS. Design House, The Mall
Tel:(OI) $5799642 / 6665$.

repair ans

£10-12,000 tax free

 Candidates must have a minimum of ONC orquivalent together with at least four years quivalent together with at least

(Ref. T.1)

(Ref. T.2) Ref. T.3) (Ref. T.4) Ref. T.4) (Ref. T.5) (9891) ${ }^{19891}$ SERVICEEMAN. London-based tele-
phone answering machine company
tequire
immed

A leading company in the Phototypeserving
Syytems Tost and Commissioning Engineers.
Capable of testing and installing a range of minicomputer based VDU terminal
equipment, incorporating the latest in MSI and LSI Techniques in Real-Time

JUNIOR TEST ENGINEER

$=5$

BORDER TELEVISION LTD.

Vacancies for

ENGINEERS
Due to an increase in the establishment, Border Television has vacancies for engineers with experience in Television studio engineering (Telecine, VTR or Central Apparatus areas) The possession of an appropriate qualification while not essential, would be an advantage The Company is located on the outskirts of Carlisle only a few minutes' from unspoilt countryside and near the English Lakes.
Basic salary would be up to $£ 6025$, depending on qualifications and experience (under review).
Applications should be addressed to:
The Chief Engineer
Border Television Ltd.
CARLISLE
CA1 3NT

MEET CHARLIE'S ANGELS

AT HAMMERSMITH FISH MARKET

You may have to put up with the odd waft of cod and rotting vegetables
but a but at least you can see the new Lyric Thearre. More important you wil
be able to rela x and scan thousands of vacancies which include: be able to relax and scan thousands of vacancies which include:
Mirroprocessor Engineer for Hardware/ Software aspects of a Data
Commenita Communication Management System, which allows diagnostics and
reconfiguration of data networks under remote control. Middlesex. To Ł9,200.
Exceptional opportunity for young RF Circuit Designer to work on UHF Telemetr. Work inclyders: Interfacees betweent ranssducers and radio
transceivers including filter design. London. To $£ 7,000+$ profit share.

Senior and Junior Design Development Engineers for the new Seneration of Teletext- VViendatat Products. High technology including
gicraprocessor controls interfaces to CRTs and audio telephon microprocessor controls, inte
techniques. To $£ 8,000$. Essex
Young RF Engineer to work on phase lock loop techniques associated
with UHF oscillators, frequency counters and frequency synthesizers. with UHF oscillators, frequency counters and frequency synthesizers.
Good theoretical background - strong bias towards communication To $£ 7,500$
Senior Engineer for group of consultants engaged on design of microprocessor based systems for the process industries. Familiarity
with M.6800, RPA 1802, GM 1650 an advantage. Berks. Salary "'wot, ees werf
Computer Engineers for either: Field service, permanent site, technical
support or systems test. Vacancies throughout U.K. Salaries vary Supporr or
enormously.
For
4 HAMMERSMITH GROVE, LONDON, WG

Thehigher the technology the more sophisticated the equipment

EMI are pioneers in some of the world's most such as ours - particularly in defence electronics demand a total commitment to excellence, and quality assurance plays a vital role in our success. Test and calibration engineering are more than peripherals roles at EMI. Joining us as a Test or Calibration engineer will mean working with some
of the world's most advanced systems, using the latest automatic test equipment, much of it custom-built. If you have gained your experienc in these fields, a move to EMI now will mean greater involvement, good prospects and really Yourwork will spa
Your work will span a wide range of projects, testing. Competitive salaries are backed up by the EMI benefits package which includes relocation assistance, where appropriate, discounts on

Group products, and excellent health and pensio arrangements.
For more information contact Mike Barwell Personnel Department, EMI Limited, FREEPOST, 135 Blyth Road, Hayes, Middiesex UB3 1BR. Tel: $01-5733888$ or 24 hr . Record-a-Call service

A testing use for

 your talentsasa Testor Calibration Engineer with EMI.
EMI

Emilectronics Limited, Hayes

DESIGN OF MICROCOMPUTER

 SYSTEMS FOR THE 1980'svacanciles exist now forwell qualified staff

development engineers

able to apply creative techniques in a wide variety of microprocessor-based applications. We are looking for microcomputer systems; also for graduates due to qualify
mith microcomp
July, 1980.

SOFTWARE SPECIALISTS

with experience in writing programs in assembler language for 6800, 8080, Z80, 2650, 9900 computer applications and Nova minicomputers.

DRAUGHTSMEN

with experience of P.C. design for training on Racal-Redac C.A.D. equipment about to be installed.

LABORATORY TECHNICIANS

able to give intelligent and adaptable support to the design staff.
Competitive salaries bonuses etc, will be paid in keeping with qualifications and experience.

WRITE, GIVING DETAILS TO:
QUARNDON ELECTRONICS LTD
SLACK LaNE-DERBY DEs 3ED

ELECTRONIC ENGINEERS

We are looking for a number of engineers ((eque/female) to work with electronic equipment at our premises
in the London Area and for small numbers of vacancies in Belfas $£ 5170$ to $£ 5620$ in London Plus additional payments for shift or rregular hour working. Applicants should have a Degree,
HND or HNC in Electronic or Electrica Engineering or Applied Physics OR
A City \& Guilds Full Technological Certificate in
(Course 271).
Clour comprehensive training, so experienc is not essential.
Write for further information and application form to: The Engineering Beraadcasting House,London W1A 1AA,
Quoting Ref: 79.E.419/WW.

All the others are measured by us... At Marconi Instruments we ensure that the very best of innovative design is used on our range of
communications test instruments and A.T. number of interesting opportunities in our Design Production and Service Departments and we can offer attractive salaries, productivity bonus, pension and sick pay schemes together with help over relocation.
f y you are interested to hear more, please fill in the Ifyouare interested
following details:-

PROJECT ENGINEERS

STUDIO CAPITAL PROJECTS
DEPARTMENT.
The advantages of a career in the Studio Capital
ProiectsDepartment of the BBC are self evident.To put Proeiests Deparatrment of the BBC Crareself evident. To put
the matter simply, broadcasting is exciting. the matter simply, broadcasting is exciting.
There is the prestige of working in a department
involved in manyof televisionand radio's most brili iant innovations. Then, there's the challenge of planning, installing and commissioning entire sound and vision systems for film, radio and television studios. Your work
is varied, stimulating and demanding. is varied, stimulating and demanding. Yun should therefore beabbe todemonstratea thorough casting and have practical experience of the operation, maintenance or installation of the relevantequipment. qualification in either Electrical or Electronic Engineering. Applied Physics or acity \& Guilds Full Technical
Certificate in Telecommuncations and be Certificate in Telecommunications and be aware of the
financial and commercial aspects of proiect planning financial and
and execution.
Although you will be based in London, you must be prepared to travel anywhere in the United Kingdom.
Salaries, ranging from f5745 to
E7535 rising to will reflect your qualifications and experience and well refitect your qualifications and
recation expenses will be considered.
There is. of course, much more to sayabout broadcasting.
If you want to discover iust how much write If you want to discover just how much, write giving full
career details to: Engineering Recruitment career Broadcasting House, London W1A 1AA, quoting reference no. $79 . E .2455 / W W$.

B日G

ATTENTION! ALL CALIBRATION E TEST ENGINEERS..

We're the Post Office Maritime Service and we have everything in a iob that you'd want: the kind of work you're
trained to do, good pay job security and all the comforts of trained to do, good pay, iob security and all the comforts of
home where they really count -at home!
Vacancies exist at several coast stations for qualified Radio Morse and teleprinter operating to traffic circulation and radio telephone operating. And for those with ambition, the prospects of promotion to senior management are excellent.
You must have a United Kingdom Maritime Radio Communication Operator's General Certificate or First Class Certificate of proficiency in Radio-telegraphy or an

RadioOfficers

 When the ship comes home, why not settledown?
have some sea-going experience.

The starting pay at 25 or over will be about $£ 4450$; after 3 years service this figure rises to around $£ 5750$. If you are between 19 and 24 your pay on entry will vary between approximately $£ 3500$ and $£ 4050$). Overtime is additional, least 4 weeks' holiday a year.
For further information, please telephone Andree Trionfi For further information, please telephone Andree Trionfi
on Freefone 2281 or write to her at the following address: ETE Maritime Radio Services Division (WW), ETE Mar.1.1.2, Room 643, Union House,

Post Office Telecommunications

Project Engineers Electronic Systems

BRITISH RELAY ELECTRONICS LIMITED a subsidiary of the Electronic Rental Group, is an internationally known Company specialising in the design and installation of low voltage communication
systems in hotels, hospitals and industry. hotels, hospitals and industry.
As a result of rapid expansion, a number of project
engneers are now required.
Our project engineers are responsible for the design of systems and their cos
for their installation.
These vary between audio and video communication systems, including multi-channel carrier and microprocessor based systems.
Qualifications to HNC or HND standards are desirable although a City \& Guilds certificate in the relevant subjects may be acceptable.
A highly competitive salary is offered and company car and the usual fringe benefits associated with a major Group.
Please write, in complete confidence, in the first
insta we, with a c.v. to
The Technical Director
British Relay Electronics Limited
32 Biggin Way,
Upper Norwood
London SE19
pper Norwo
ondon SE19

COMPLETE ENGINEER!

Or ready to become one?
We require someone who can combine an understanding of basic
device parameters and system requirements with a flair for engineering problem free products.
He., or she will have the task of developing advanced designs of
Ouartz Crystal Oscillators as Quartz Crystal Oscilletors as part of a tean dedicated to
maintaining our leadership of the European market. The qualities maintaining our leadership of the European market. The qualitites
required of the successiul candidate combine a high level of
analytical ability with drive and vision and the instint to idel aealytical ability with drive and vision and the instinct to identify
the most appropriate approach to engineering problems. the most appropriate approach to engineering probiems.
Oualifications: A goo Honours Degree in Mathematics. Physics,
Electronic Engineering or a related subject. Extensive experience is Electronic Engin
not necessary.
attractive rangent carries an excellent starting salary and an
penses when benefits, including relocation expenses where appropriate. The Quartz Crystal Division is the largest
crrstal chstal manufacturing facility in Europe and there are first class
career development prospects within the Division and the ITT Group as a whole.
Please write or telephone R. J. Coster, ITT Components Grous, Ouartr Crystal Division, Edinburgh Way, Harlow
Essex. Telephone Harlow 26811 ext. 2562 .

ITII

SENIOR LABORATORY TECHNICIAN

 enseniners with the development and construction
awide range of communications equioment Candidates must have some experience of workshop
pracatic and the abibityto work trom verbal instruc
 high standard:
He/she will be responsible for servicing all Com
munications Department Iaboratories. includin
 apparatus.

BBG

Telecommunications Project Engineer

Salary up to $£ 7,116$ per annum (inclusive)

This is an important post within an established group of Reading) dealing with the specification, design, installation, systems of telecommunications control and instrumentation systems of telecommunication
within the Thames Water Area.
Applicants should be chartered engineers (male / female) with
several years' experience of design or proiect work, including several years' experience of design or project work, including
budgetary control in large telecommunications systems. budgeary control, in large telecommunications systems.
sound knoweldge of ransmision principles and practice is
required and some experience of telephony is desirabie. Excellent conditions of service apply including a pension
scheme, a 35-hour $5-$ day week (flextime) plus generous sick leave and holiday entitlements. There is also a staff restaurant leave and holiday entitee,
and an active sociai club.
Application forms and further details can be obtained from vancy Division, Nugent House, Vastern Road, Roading
RG1 8 (TBE (Tel: Reading 593331). Please quote reference
P 24

Closing date: 4th Décember, 1979
Thames Water

Radio Technology ELECTRICAL ENGINEER

Up to £8375
The Radio Interference Laboratory at Stanmore. Middlesex,
undertakes a wide variety of research and development projects in the frequency range up tor 21 GHz . As engineer in charge of he ther day, to-day management of staft and
responsibe for the
development projects. Duties also include participation in development projects. Duties also incluale particication in
electro-tennical committes at national and international electro-technical committees atnational ather government
levels and liaison with industry and oter
departments. Present projects include investigations into departments. Present projects include investigations ino
methods of measuring the total power radiated by micromeinods ons, the inmunity of television sets from external
wave ovens
signals, the interference potential of ADP equipment, the signals, the interference potential orasuring, receiving and
developont or fadio frequency
television detection equipment and the measurement and television detection equipment and the measurem
suppression of a wide range of electrical equipment

Candidates must have qualified for corporate membership
of IEE or IERE, and have several years' professional experience in addition to the minimum requirement for
chartered status. They must have at least two years' chartered status. They must have at least two years'
experience in a relevant field, and should have a broad outlook enabling them to appreciate the general principles
of frequency spectrum engineering
-
Starting salary between $£ 66,865-£ 8,375$ depending on qualifications and experience. (Salaries under review).
romotion prospects. Non-contributory pension scheme.

13 Derther details and an application form (to be returned by
13 Alencon Link, Basingstoke, Hants. RG 21 1 1 JB , or telephone Basingstoke (0256) 68551 (answering service operates
outside office hours). Please quote: $T(2) 85$. HOME OFFICE (9826)

ELECTRONICS TECHNICIANS

GRADE 6

dept. of méhanical and production engineering,

GRADE 6
dep. of electrical and electronic engineering, T. service a wide range of e ecectronic and digital e equipment, design and
modity elecronic circuits and apparatus. Applicants must have a
Thority thorough knowiedge of, practical experience in
procedure.
Salary range $£ 4767-5592$. 0 .
GRADE 5
OEPAT OFECVLLAND ATRUCTURAL ENGINEERING, s.w.8.
TE be responsible for the repair and modification of electo To be responsible fort the repai and modificication
instruments Solary range $£ 4.224-\xi 4,855$ p.a.
(o) Vitechnicc Application forms from the - 0 \{he Staffing Office, Polytechni

MANCHESTER POLYTECHNIC D

Swaziland
Senior
Technical Officer (Broadcasting)
Up to £7,785 p.a. (under revision) plus allowances
Candidates should have City and Guilds
Telecommmications Final Certificicate or lelecommunications Final Certificate or equivalent
and at least seven years' experience in broudcasting.
Studio experience is required and block Studio experience is required and block
transmission experience would be adva transmission experience would be advantaneous.
Duties will include the installation and maintenance of broadcasting equipment in the studio block
and/or transmitting stations. He will take charge andor transmiting stations. He will take charge of
major outside broadcast assignments and supervise
operational and maintenance taft operational and maintenance staff. Posting will be
the e apital of this scenic African country which
employs many British experts. employs many British experts.
Salary includes a substantial tax-free allowance
(reviewed annually) paid under Britain's overseas (reviewed annually) paid under Britain's overseas
aid programme. Basic salary attracts 25% tax-free
gratuity gratuity. Benefits include free passages, generous paid leave,
children's holiday visit passages and children's holiday visist passages and education
allowances subsidised housing, appointment grant allowa
and int
The terms on which civil and public servants may be
released if selected for appointment will be subject released if selected for appointment will be subje
to agreement with their present employers. For full details and application form write quoting
MX 1010 WD.
Crown Agemis ©
Crown Agents for Oversea Governments and
Administrations. Recruvitsent Division,
If you don't want to work you have to work to earn enough an Phone us now to register for these and many other positions. Self-motivator for PROJECT LEADER management. FIELD SERVICE $£ 7 \mathrm{~K}+\operatorname{car}(\mathrm{W}$. London) VHF \& UHF commun FIELD SERVICE Herts. /Beds. and Greater London. $\quad £ 4.5-\mathrm{E} 5.5 \mathrm{~K}+\mathrm{car}$
 CIELD SERVICE
Computer based process control. Full training in Europe (2 months).
Berkshire. NC ENGINEER
KTM \& DSG/MONARCH CNC \& NC Machine experience. South

LOGEX
ELECTRONICS RECRUITMENT SERVICE 309 HIGH ROAD, LOUGHTON, ESSEX $1 G 10$ ITD.
$015021589 / 0937$ solad 014647714 EXT. 502

Computer Maintenance Engineers

The Company:

Burroughs is an international computer company with world-wide activities. The high technology of its products designed and manufactured at Cumbernauld demands the extensive use of computers as shown below.

The Job:

Installation and maintenance of a wide range of computer equipment which covers:

* 3 large scale (B6800) computer systems and peripherals
* 4 medium scale (B 1800) computer systems and peripherals
24 small scale (B80) computer systems and peripherals
over 100 terminals linked to the above. Qualifications:
Ideally, a degree but emphasis will be on ability.
Salary:
Salary will not be a limiting factor in the selection of suitable candidates
Personal Development:
All necessary training on mainframes and peripherals will form part of the successful candidates personal development.

For Further Information:
Write or phone
Recruitment Manager Burroughs,
Cumbernauld G68 0BN.
Telephone 023-67-35457.
Burroughs

Audio and TV Servicing

Sanyo Marubeni, one of the world's leading electrical
electronic organisations, utilise high technology capability electronic organisations, tutise hadio and video products.
in a wide range of domestic a
Continuing success in the U.K. has created the following Continuin
positions.

Chief Engineer/
Asst.Dept.Manager

Quality Control Engineer

Audio Service Engineers

 Please apply to Mr. J. Careford, Sanyo Marubeni UK
Limited, Greycaine Road, Watford, Herts. Tel: Watford $\stackrel{\text { Limited }}{46333 .}$

Technology at your Fingertips

TEST/QUALITY

 ASSURANCE ENGINEERSAt senior and intermediate level wanted to work on our range of advanced broadcast television studio products inclu

Applicants should have an up-to-date knowledge of digital and Applicants shoula have an up.t. from experience working, on
linear circuit techniques gained for
television studio television studio equipment, radar equipment or similar
sophisticated products, and qualified to HND, HNC, or equisophisticat
valent level.

SYSTEMS ENGINEER

You would be involved in all stages of product management on the design and building of studio and mobile TV systems and
should be prepared for occasional world-wide travel. The appointment requires someone with a background in this type
of work, or in the operational side of television with the ability to of work, or in the operationa side of television with the abilty to
take charge of people and deal with problems in the field on
your own inititive.

Employment benefits incude excellent salary, generous holidays, free life and health insurance.
subsidised meais and relocation expenses.
Please apply for further details and application forms to Jean

) N M North Way, Andover,
Hants, SP10 5Al

Telephone: (0264) 6134

Join the Meteorological Office as

Radio (Meteorological) Technician

You would be expected to install, test and maintain a wide range of
meteorological electionic instrumentation including radars, commeterological electitonic instrumentation including radars, com-
munication, facsimile, data handling and logging equipment, incor-
porating computers and micro-processors. You would also assist porating computers and micro-processors. You would also assist $\mathrm{R} \& \mathrm{D}$
eams in the construction and testing of prototype equipment. Jobs eams in construction and testing of prototype equipment. Jobs
nvolve a considerable amount of trevelling the field, and you would
need to possess a valid driving licence. Some travel by sea and air need to possess a valid driving licence. Some travel by sea and air
would also ise involved
After specialist training, you would be posted to one of the MeteoroAfter specialist training, you would be posted to one of the Meteoro-
logical office stations throughout the U. K.; during your career you logical Office stations throughout the U.K.: during your career you
could expect to move areas several times, and there are opportunities
to work ouerseas. Working hours may include some day-shift working 10 work overseas. Wor
ad also on-call duties You will be eligible it you are
You will be eligible it you are:
a) Aged $19-25$ and hold $C \& G$ Telecommunications Technicians Part 1
Centificate former course Centificate (former course No. 270); or C \& G Telecommunication
TTccnnicians or Engineering Intermediate Certificate (former courses No. 49 or 50): or o NC in appropriate eleectrical/ /electronics subjectse or
TEC/SCOTEC Certificate in a relevant discipline, together with TEC/SCOEC Certificate in a relevant discipline, together with
normally 3 years practical experience; or
o) A former member of HM Forces (or will be leaving soon) with levant experience.

Starting salaries will depend upon age, e.g. $£ 3,389$ at $19, £ 4,270$ at
25
and over
rising toa a maximum of $£ 4,899$. From 11.80 an agreed 25 and over, rising to maximum of $£ 4,899$. From $1,1.80$ an agreed
pay award will rasise the maximum on the scale to $£ 5,530$, with
appropriate adjustments at other levels.
pportunities for promotion to TTO III and above are excellent, and wit
equests for application forms, and all enquiries to: The Secretary, Berks. RG12 2SZ or telophone Bracknell (0344) 20242, Extn.
2596.

EXPERIENCED

 PRODUCTION MANAGER
WISHING TO PROGRESS

Opportunity to join a London-based company producing high quality
sound mixing consoles for live media, protessional recording and broadcast applications.

The individual most suitable for this responsible and challenging
situation would be aged $30 / 40$, preferably with an HNC (or similar), situation would be aged $3 / 40$, preferably with an HNC (or similar),
qualification, and several yearss of production planning and manage. qualification, and several years of production planning and manage
ment experience in a high growth rate company environment witt
products designed to a high reliability specification.
Ability to analyse and formulate production procedures, to determine
movement of materials and work-loading to maintain growth movement of materials and work-loading, to maintain growth o
production output without compromise to quality standards, and to control and motivate an enthusiastic production team is considered to
be essential.
desirable.
In return we offer: Excellent remuneration, good conditions an opportunity to progress within an
through new product innovation.

Please contact Chas Brooke on 01-388 7060 or 01-387 7679 for an application form and comp
giving résume of career to date

54-56 Stanhope St., London NWI 3EX

WIRELESS WORLD, DECEMBER 1979
ARTICLES FOR SALE

Classified ARTICLES FOR SALE,
ANTIQUE MACHINE

+ CURIOSITIES

${ }^{2}$

SPOT CASH paid for all forms of electronics equipment and components F.R.G. General Supplies 550 Kingston Road London SWY20 8DR Tel: 01-404 5011 Telex: 24224. Quote Ref. 3165

TURN Your surplus Capacitors
transistors, etc, into cash. Contact

Use this Form for your Sales and Wants
To "Wireless World" Classified Advertisement Dept., Dorset House, Stomford Street, London, SEI 9LU please insert the advertisement indicated on form below

- Rale E1. 50 PER LINE Average six words per

NAME...

please write in block letters. classification
Number of insertions.

A major exhibition of computers, peripherals, terminals and services, held each spring in the most highly industrialised area of Western Europe. comper Halle 80

Centre International Rogier, Brussels, May 6, 7 \& 8, 1980

The ever-growing international attendance gives Compec Europe exceptional status as a sales platform for providers of hardware, software and services from every country. Ensure participation in its benefits by posting the coupon below.

* Best Value for money.
* Used by professional engineers, D.I.Y. * World-wide proven reliability. * Low servicing costs.
$* 20 \mathrm{~K} /$ volt sensitivity an
* $20 \mathrm{~K} /$ volt sensitivity and high accuracy. * Large mirror scale meter. *Large range of inexpensive accessories. * 12 month warranty, bracked by a full after
sales service at E .B.Sole U.K.Distributors sales service at E.B.Sole U.K. Distribu
Prices from $£ 16.60-£ 32.00+$ VAT Prices from $£ 16.60-£ 32.00+$ VAT
Send for full colour leaflet and prices o Send for full colour leaflet and prices on
whole range including accessories. =- ELECTRONIC 프프﹎ BROKERS LIMITED 49-53 Pancras Road, London NW1 20B.
Tel: 01-837 7781. Telex: 298694.

INDEX TO ADVERTISERS
Appointments Vacant Advertisements appear on pages 138-158

Acoustical Mfg. Co. Ltd. ${ }^{\text {Page }} 29$	G.E.C. movalve	Quantum Electronics
A.EI. Crystals ${ }_{\text {A. }}$ Aupples	G.E.C. Mo Valve G. P. International	Quantum Electronics 30
	Greenwood Electronics	Radio Components Specialists ${ }_{13}^{115}$
Antex (Electronics) Ltd. ${ }^{\text {Am }}$	Hall Electric Ltd. ${ }^{2}$	Radio Supplies 103
Aspen Electronics Lto.	Hameg Lte	Ralfe P.F. 124
		R.C.S. Electronics ${ }^{132}$
Avo Ltd		${ }_{\text {R.S.T. Valves }}^{\text {Ryley Automation Ltd. }}$...................... ${ }^{111}$
B. Bamber Electronics		
-rkway Electronics Ltd. 134	I.L.P. Electronics	Sabtronics International
Barrie Electronics Ltd. ${ }^{123}$	Industrial Tape Ap	Safgan Electronics Ltd.
	Integrex Ltd. 104, 105	Science of Cambridge 6
	Interport Mains	Scopex Instruments Ltd. 113
	J.D. Electronics 122	
	J.P.S. Associates 28	Serrice Trading 119
	K.A.G. Electronic Investments Ltd. 118	
Cambridge Learning 22, 23	they Instruments Ltd. ${ }_{18}^{27}$	SME Ltd.
arston Electronics Ltd. 10, 131	K.G.M. Electronics Ltd. ${ }_{\text {Kir }}^{18}$	Sonic Sound Audio ${ }^{43}$
tronics	Ete	Sota Communicatio
Circards No		
Codespeed	Larsholt Electronics 110, 118	
Colomor (Electronics) Ltd. ${ }^{131}$	Lascar Elec	Sullivan H. W. Ltd. ${ }^{32}$
Compec Europe '80 ${ }^{159}$	Lektrokit	Surrey Electronics Ltd. ${ }^{136}$
${ }^{\text {Computer Appreciation }}$ Continental Specialists Corp.................. ${ }^{135}$	Lowe Electronics Ltd.	Swanley Electronics Ltd. 132
Coutant Electronics Ltd.Crimson Elektric16		
	${ }_{\text {Maclin-Zand Electronics Ltd. }}^{\text {Mapin Electronic Supplies }}$................. ${ }^{\text {cover }} 5$	Tandy Corporation
ston Elec \#-1...................... 118	Martin Associates	
	Marshal, A. \& Sons (London) Ltd. .i. 116	Teekrronix (Telequip
	M.C.P. Elec	Teleradio Electronis
(eng Electronics	Microcircuits	Texas instruments
Dominus 131	${ }_{\text {Microsaigstems }} \times 80$	
	Millbank Electronics (M.1.L.)	
112	${ }_{\text {Millward }}^{\text {Mils. W. . }}$.	
	Minim Audio 30	Electro
Electronic Brokers Ltd $\ldots . . .12126,127,128,129,160$	Monolith Electronics Co. ${ }^{26}$	Vero Speed 36
ronics Weekly …t................. ${ }^{133}$	Multicore Solders Ltd. .	
		West Hyde Developm
Expansion Corporation 101	Newbear Computer Stores 102,110	West London Directents
Ferranti Elrument Ltd FieldTech Future Film Developmen	Olson Electronics	Wireless World '80 - 139
	Precision Petite Ltd.	Z. \& 1. Aero Services Ltd. 112, 134
OVERSEAS ADVERTISEMENT AGENTS: France \& Belgium: Norbert Hellin, 50 Rue de Chemin Veat, F-9100, Boulogne, Paris.	Japan: Mr. Inatsuki, Trade Media - IBPA (Japan), B. 212. Azabu Heights, 1-5-10 Roppongi, Minato-ku, Tokyo 106 Telephone: (03) 5850581 .	Mr Jack Mannel. The Farley Cor. Suie 60 . Raann Builing,
Hungary: Mrs Edit Bajusz, Hungexpo Advertising Agency Budapest XIV, Varosliget. Telephone: 225008 - Telex: Budapest 22-4525 -INTFOIRE	 	Atlanta, Georgia 30305. Telephone: (404) 2377432. Mike Loughlin, IPC Business Press, 15055 , Memorial Ste 119 Houston, Texas 77079 - Telephone (713) 7838673.
Italy: Sig C. Epis, Etas-Kompass, S.p.a. - Servizio Estero. Via Mantegna 6, 20154 Milan. 37342 Kompass	63074. Mr Víctor A. Jauch, Elmatex International, P.O. Box 34607 Los Angeles, Calif. 90034 , USA - Telephone (213)	Canada: Mr Colin H. MacCulloch, International Advertising 2-Telephone: (416) 3642269 2 - Telephone: (416) 364

Wireless World, December 1979

All mail to:-
P.O. Box 3, Rayleigh, Essex SS6 8LR. Telephone: Southend (0702) 554155 Shop: 284 London Road, Westlifff-on-Sea, Essex.
ELECTRONICSUPPLIES LTD

Applications don't come much more critical than digital watch manufacture.
Here, discrete deposits of Multicore Oxide-Free Solder Cream are screened onto the PCB . A precision job, with no risk of operator error or fatigue. And, a convenient temporary adhesive for the positioning of components.

Solder-flow is accomplished by simply passing the units over a hot plate.
Fast. No oxide to contend with. No dirty residues.
This manufacturer says Multicore Oxide-Free Solder Cream has reduced reject rate substantially and offers superior soldering quality.

.. because ordinary solder creams or pastes contain rosinbased flux mixed with solder powder produced by atomisation. This means that every particle of the powder is covered with a layer of oxide -slowing down the soldering process, leaving a dirty flux residue and causing solder globules to stick to the flux and possibly fall loose into the equipment after shock orvibration. But, Multicore have developed a very special method of producing solder powders that are virtually oxide-free.
These can be used in cream form - comprising an homogeneous stable mixture of pre-alloyed powder and flux, designed specifically for hybrid microcircuits, 'PCB's and critical component joints.
When heated, Multicore Oxide-Free Solder Creams melt and flow as quickly and cleanly as rosin-cored solder wire, leaving a pale clear flux residue without solder globules.
The in-built quality of Multicore Oxide-Free SolderCreams make them the ideal specification for almost any application calling for low cost yet high reliability.
They are available in a wide range of combinations of solder alloys, fluxes, particle sizes, flux contents and viscosities - often replacing solder preforms.
However, if you have an application that specifically requires preforms, remember that Multicore supply a wide variety of those as well.
Multicore Solders Ltd are Ministry of Defence Registered Contractors and on Qualified Products List QQ-S-571E of U.S. Defense Supply Agency for solder creams and preforms.

Compare these electron-microscope enlargements at $\times 240$ magnification:

'Ordinary' cream solder powder, revealing poor particle shape and dross.

Solder powder from Multicore Oxide-Free Solder Cream displays clean, uniform particles.

For full information on Oxide-Free Solder Creams orany otherMulticore products, please write on your company's
Multicore SoldersLimited,
Maylands Avenue. Hemel Hempstead, Herts, HP2 7EP. Telephone:HemelHempstead 3636 . Telex: 82363 .

[^0]: wwi - 048 FOR FURTHER DETAILS

[^1]: Micrometals

[^2]: *"Intelligent" is used in the same hopelessly
 ptimistic way here as in advertisers "intelligent
 optimistic way here as in advertisers' "intelligeni
 terminals", "intelligent v.d.uss!
 that the plug can pass IO tests! toes not imply

[^3]: COMPI FTE THIS COUPON FOR
 FURTHER DETAILS
 To: Bryan Cassidy, IPC Business Press Limited, Surrey House, 1 Throwley Way, Sutton, Surrey SM1 4 QQ England.
 Please send me further information and exhibition
 details of Expansion-Coveraration 1980-1990

[^4]: WW-094 FOR FURTHER DETALLS

